
SoK: An Essential Guide For Using Malware Sandboxes In Security
Applications: Challenges, Pitfalls, and Lessons Learned

Omar Alrawi, Miuyin Yong Wong, Athanasios Avgetidis, Kevin Valakuzhy, Boladji Vinny Adjibi,
Konstantinos Karakatsanis, Mustaque Ahamad, Doug Blough, Fabian Monrose, Manos Antonakakis

{alrawi, miuyinyong, avgetidis, kevinv, sadjibi3, karakatsanis, ma3, db209, fabian, manos}@gatech.edu
Georgia Institute of Technology

Abstract—Malware sandboxes provide many benefits for
security applications, but they are complex. These com-
plexities can overwhelm new users in different research
areas and make it difficult to select, configure, and use
sandboxes. Even worse, incorrectly using sandboxes can
have a negative impact on security applications. In this
paper, we address this knowledge gap by systematizing 84

representative papers for using x86/64 malware sandboxes
in the academic literature. We propose a novel framework to
simplify sandbox components and organize the literature to
derive practical guidelines for using sandboxes. We evaluate
the proposed guidelines systematically using three common
security applications and demonstrate that the choice of
different sandboxes can significantly impact the results.
Specifically, our results show that the proposed guidelines
improve the sandbox observable activities by at least 1.6x

and up to 11.3x. Furthermore, we observe a roughly 25%

improvement in accuracy, precision, and recall when using
the guidelines to help with a malware family classification
task. We conclude by affirming that there is no “silver bullet”
sandbox deployment that generalizes, and we recommend
that users apply our framework to define a scope for their
analysis, a threat model, and derive context about how
the sandbox artifacts will influence their intended use case.
Finally, it is important that users document their experiment,
limitations, and potential solutions for reproducibility.

1. Introduction

Malware sandbox systems are core tools in malware
analysis and security applications, and they are integrated
in intrusion detection systems [1], [2], forensic analysis
pipelines [3]–[6], automated reverse engineering tools [7]–
[9], and threat intelligence services [10]. However, cor-
rectly using sandboxes is challenging, mainly due to
the plethora of choices in implementations, monitoring
techniques, and analysis configurations, such as choosing
between emulation, virtualization, or bare-metal. In fact,
the choice of dynamic analysis and monitoring techniques
can have a varying impact on the sandbox analysis re-
sults [11], [12], including missing or incorrect artifacts,
sandbox evasion, misleading forensics results, and skewed
behavior reports [13]. As a result, the security applications
depending on those artifacts can be negatively impacted by
false positive detections, inconclusive forensic analyses,
and poor quality threat feeds.

Prior works that survey dynamic malware analy-
sis techniques [11], [12] summarize different methods

for researchers to build and improve sandboxes. Other
works [14]–[16] survey evasion techniques or systematize
binary instrumentation methods. The closest systemati-
zation from the user perspective for designing malware
experiments [13] was published in 2012. This particular
work provides applicable guidelines for malware exper-
iments in general and does not specifically focus on
sandboxes. Besides, since 2012, the computing environ-
ment, analysis methods, and malware threats have changed
dramatically. There are new types of malware threats
like ransomware and cryptominers; new analysis methods
such as memory forensics and hardware tracing; and new
computing environments such as cloud and IoT platforms.
Moreover, prior systematization looks at designing mal-
ware experiments, which also includes using sandboxes,
but does not provide the depth required to understand the
implementations, monitoring techniques, and parameter
configurations of sandboxes.

Despite the available literature on dynamic malware
analysis, incorporating sandboxes into new security ap-
plications remains a challenging task. This is largely at-
tributed to the complexity of sandbox deployments, which
poses unique challenges to non-expert users. For example,
researchers in interdisciplinary security fields may not
have the system experience to consider sandboxes for
their application or may be overwhelmed by the choice
of technology such as hardware, hypervisors, operating
systems (OS), and software services. In fact, because most
of the literature surveyed lacks pertinent details about the
sandbox deployment, it is very unlikely that users will re-
produce the claimed results. Therefore, our objective is to
bridge this knowledge gap by studying previous work use
of sandboxes. We seek to derive a set of guidelines from
prior works to help users effectively incorporate sandboxes
in diverse security applications and avoid common pitfalls.

Unlike previous works [12]–[17], we study how re-
searchers use sandboxes to understand the practices not
only as a whole, but also how they can contribute to a
systematic approach for incorporating sandboxes into new
security applications. We achieve this goal by studying
over 350 papers spanning two decades and systematizing
84 representative papers. Specifically, our work makes the
following contributions:

• A component-based framework to simplify sand-
box deployments and configuration for three
classes of security applications, namely detection,
observational studies, and anti-analysis.

• An application of the framework to systematize

1



84 papers on sandbox practices and derive seven
guidelines to bridge the knowledge gap for sand-
box end-users.

• A demonstration of how to apply the derived sand-
box guidelines for a set of routine tasks, namely
blocklist creation, malware behavior extraction,
and malware family classification.

• An evaluation showing how the guidelines im-
prove sandbox use by comparing the performance
between two sandbox deployments, namely one
that applies the proposed guidelines and another
that does not.

Our systematization finds that using generic sandboxes
can have limited coverage and can be highly skewed
toward more prominent malware families. Conversely,
applying advanced sandbox techniques is far from trivial,
and even if end-users follow strict guidelines and best
practices, there are no guarantees that the sandbox results
will meet the desired outcome. In particular, the mon-
itoring technique and the choice of analysis parameters
appear to be the most important when using sandboxes. A
transparent monitoring technique can improve the fidelity
of sandboxes and therefore improve their analysis efficacy.
Similarly, configuring a balanced analysis environment
with signs of wear and tear, such as documents, images,
videos, and browser activities, can potentially improve
the analysis results. Ultimately, researchers should focus
on defining the scope of their analysis, a threat model,
and obtaining context about how sandbox artifacts will
influence their application. Based on these observations,
we propose seven guidelines for improving the use of
sandboxes in security applications.

We evaluate the proposed guidelines systematically
through three empirical experiments and demonstrate from
the end-user perspective that the choice of different sand-
box configurations can impact the desired outcomes.
Specifically, we analyzed 1, 471 real malware samples
that span eight different families to create a blocklist,
extract malware behavior, and classify malware families.
Our results show that the proposed guidelines can improve
the observable artifacts of the sandbox by at least 1.6x
and up to 11.3x. Our family classification results show
a 25% improvement in accuracy, precision, and recall
when applying the guidelines. Moreover, by combining
artifacts from both sandboxes, some improvement in clas-
sification results can be attained. These findings indicate
that combining multiple guided sandbox deployments with
different configurations can be an effective strategy. That
said, even with a well-configured sandbox, we show that
problems with failed execution, anti-analysis, and missing
dependencies are not uncommon. We conclude with a
set of recommendations and make our dataset and code
available to the research community.

2. Framework and Methodology

Figure 1 provides an overview of the malware sandbox
components, namely the implementations, the monitoring
techniques, and the analysis parameters. The framework
highlights each of these layers and their underlying con-
figurations. We also differentiate between sandbox end-
users and developers/researchers. In particular, sandbox

Analysis Parameters

Hardware

Operating System

Emulator

Hardware

Hypervisor

Hardware

Emulation Virtualization Bare Metal

User-Space
Inside Guest

Environment Analysis TimeInput Number of Runs

Kernel-Space
Outside Guest
Online Offline

Implementations

Monitoring

Operating System

Developers/
Researchers

End-Users

Build & Improve Configure & Analyze

Figure 1: Overview of the systematization framework and
stakeholders relationship. This work derives guidelines
from the end-users perspective (dotted rectangle).

developers and researchers build and improve the underly-
ing sandbox implementations and monitoring techniques,
while end-users configure and deploy sandboxes for dy-
namic malware analysis. End-users use sandboxes for a
specific application, which we describe in the next section.
In this work, we systematize the sandbox literature to
distill guidelines for configuration and analysis methods
for sandbox usage (dotted box).

Malware Sandbox Implementation. In Figure 1, there
are three types of implementations. The first type is em-
ulation, which relies on implementing a virtual machine
purely in software (i.e QEMU [18]). The second type is
virtualization, which is a specialized operating system
(OS) that segments resources and manages access to
physical hardware for virtual machines (i.e. Xen [19]).
The third type is bare-metal or physical machine, which
runs an OS directly on the hardware. The key difference
between the three types is how much of the physical
resources (hardware) are implemented in software versus
hardware. In modern computing, some pure software emu-
lation systems use paravirtualization and virtual hardware
modeling (virtio [20]) to improve performance, which
overlaps with virtualization techniques. Figure 1 provides
a generic model of sandbox implementations in the con-
text of malware analysis, and we note that there can be
many hybrid models.

Malware Sandbox Monitoring. In Figure 1, the monitor-
ing section has four types of techniques that are built into
the malware sandbox implementation or that researchers
can extend for additional monitoring capabilities. These
techniques include inside-guest user-space, inside-guest
kernel-space, outside-guest online, and outside-guest of-
fline monitoring. Inside-guest refers to monitoring tools
that run inside the analysis environment, either in user-
space as a program or in kernel-space as a driver, respec-
tively. Outside-guest refers to monitoring tools outside the
analysis environment, monitoring online (during analysis)
such as VM introspection [21] or offline (post-analysis)
such as forensic tools [22], respectively. Moreover, there
is a myriad of monitoring capabilities [15] that researchers
can develop inside or outside an analysis environment,
depending on the type of sandbox implementation (emu-

2



lation, virtualization, or bare metal). For additional infor-
mation, Egele et al. [11] present an extensive survey of
dynamic analysis monitoring approaches.

Malware Sandbox Analysis Parameters. In Figure 1,
the analysis parameters section has four parameters that
end-users can configure. The input parameter includes
startup scripts, interaction scripts, and application instru-
mentation. These inputs help prime the analysis environ-
ment to trigger malware execution. For example, a startup
script can create artifacts in the environment to show signs
of wear and tear [23] or an interaction script can interact
with system utilities to trigger rootkits [24]. The environ-
ment parameter includes the installation and configuration
of the OS, system settings, user profiles, applications, and
network settings. The number of runs parameter specifies
how many times the sample is analyzed. Finally, the anal-
ysis time parameter includes static or adaptive analysis
time. The time parameter determines the duration of the
analysis, which can reveal dormant malware functions
as the time parameter is varied. An advanced technique
includes manipulation of the system’s real-time clock to
speed up time or report artificial time values, which can be
achieved in an emulated and virtualized implementation.

Sandbox End-Users. As shown in Figure 1, we differ-
entiate between sandbox developers/researchers and end-
users. Sandbox developers and researchers must consider
and make trade-offs between sandbox design properties,
including transparency, scalability, extensibility, and iso-
lation. For completeness, we provide a brief survey of
the sandbox system design literature in the Appendix A.
However, end-users generally do not need to consider
these design decisions because they use sandboxes by
configuring and analyzing malware [25]. In this paper, we
systematize the sandbox literature from the perspective
of end-users. Specifically, we group end-user sandbox
applications into three categories, namely detection, ob-
servational, and anti-analysis. We provide more details
on each of these categories in the next section.

2.1. Systematization Methodology

We systematize the literature on the use of sandboxes
by examining their implementations, monitoring methods,
and analysis parameters. We sourced more than 350 pa-
pers that span 20 years of research from top security
conferences, journals, and workshops, then selected 84
papers that provide a comprehensive view of how security
researchers (experts) have used sandboxes. We started by
searching Google Scholar for dynamic malware sandbox
analysis keywords, such as “malware,” “dynamic anal-
ysis,” and “sandbox.” We identified the earliest works
describing dynamic malware sandbox analysis and set
them as our initial set.

We then searched for later works in two ways. First,
we used the same set of keywords to search year-by-year
starting from the earliest work up to the current year.
Second, we manually went through later papers that cite
earlier sandbox system papers and collected them. We
refined our keyword set based on the newly identified
papers and repeated the process until we enumerated all
relevant papers. We selected 84 papers that are the most
relevant by identifying how they uses sandboxes and their

applications. We define the use of sandboxes as academic
work that dynamically analyzes malware in an x86/64-
based sandbox system for Microsoft Windows. We then
prioritized the ranking of the paper based on relevance to
a problem area (novelty), the number of citations (impact),
and the publication venue (visibility).

3. Categories of Sandbox Usage

We categorize the use of sandboxes into detection
papers, observational papers, and anti-analysis papers and
group them in Table 1. It is important to note that these
categories are non-exhaustive and that some papers will
have dual applications. In such cases, we consider the
primary goal of the paper as a classification discriminant.
For example, Kim et al. [26] study obfuscation techniques
(anti-analysis) in benign and malicious binaries to build
a detector based on obfuscation features/tactics. Since the
purpose of the work is to discriminate between benign and
malicious programs, we classify the primary goal of the
work as detection.

3.1. Detection

A common goal between detection papers is to identify
if an unknown binary is malicious or benign. Detection
papers use sandboxes to examine the behavior of unknown
binaries through a monitoring component that provides in-
put to the detection system. The detection papers surveyed
examine dataset sizes of malware ranging from four sam-
ples to 150K samples. They rely on system and network
artifacts as input for their detection techniques. From the
25 detection papers, 14 use system and network artifacts,
six use only network artifacts, and 12 use only system
artifacts. These variations account for different vantage
points that detection systems use to identify malware,
i.e., on-host versus off-host. In addition, they may have
compute or visibility constraints (granularity of sandbox
artifacts).

For example, Kirda et al. [27] propose an on-host in-
browser analysis technique to detect malicious browser
helper objects (BHO) whereas Antonakakis et al. [28]
and Bilge et al. [1] propose detection techniques for
internet service provider (ISP) networks (off-host). The
first detection system requires a fine-grained system and
browser behavior while the others only require DNS traffic
(granular network artifacts), respectively. Furthermore, on-
host detection can examine different granularity of activi-
ties such as CPU instructions [29], system calls [30], disk
and memory forensics [31], [32], network activity [4], or
a combination of all of them [33]. Network artifacts can
range from full traffic capture [34] to flow [35] and even
include protocol specific like DNS [1], [28] or HTTP [36].
Detection systems rely on sandboxes to detect malware
or evaluate their efficacy. For example, Yen et al. [37]
evaluate their system’s detection robustness by using a
small set of malware network traces and mixing them with
predominately benign network traffic.

Summary. Detection papers have to deal with variability
found in the choices of implementations, monitoring, and
analysis parameters that can affect the reliability, visibil-
ity, and coverage of the sandbox results. Sandboxes can

3



potentially have limited coverage, contaminated artifacts,
and mislabeled behavior.

3.2. Observational

Observational papers analyze known malicious files.
The dataset sizes for observational applications range from
a single sample to millions, which varies based on the
analysis depth and monitoring method. For unpacking
malware (which uses instruction-level tracing), the dataset
size ranges from 3 samples to 3,400, while the dataset size
for longitudinal malware studies (which uses high-level
behavior) ranges from 6,300 samples to 31M. The depth
of analysis also relates to the artifacts studied (system or
network). Of the 38 papers, 21 only use system artifacts,
nine only use network artifacts, and eight use both. System
artifacts have different levels of abstraction because they
are dependent on the monitoring tool (system events, API,
instructions, file system artifacts, etc.). Network artifacts
have less variability because they can be observed from
outside an analysis environment in a standardized form
(i.e. full packet capture).

Of the 38 articles surveyed, we found five subcate-
gories that measure or investigate malware threats using
sandboxes. They deal with unpacking and deobfuscation,
labeling and remediation, investigating C&C operation,
automating reverse engineering, or studying malicious
behavior over time (longitudinal). These subcategories use
sandboxes in different ways. For example, some [38]–[41]
look at labeling malware according to their behavior.
Bailey et al. [38] and Paleari et al. [40] study how mal-
ware changes the state of a machine with different goals,
namely identifying malware families or recovering from
malware infections, respectively. Observational studies
use sandboxes very broadly.

Summary. From a design perspective, extensibility and
scalability are key properties seen in observational studies.
End-users can choose sandbox monitoring capabilities for
different depth of analysis and monitoring granularity.
Scalability enables large-scale experiments in observa-
tional studies, which appear to favor suitable sandbox
implementations like emulation and virtualization.

3.3. Anti-analysis

Malware authors use anti-analysis to evade sand-
boxes [14]. Anti-analysis papers try to make sandboxes
more robust by detecting and thwarting anti-analysis
methods. The surveyed anti-analysis papers use malware
dataset sizes ranging from seven to 110K. They rely on
system and network artifacts together or only system
artifacts. Lindorfer et al. [42] use network artifacts to
identify anti-analysis activities, namely, if malware queries
external network resources for time, response strings, or a
list of known sandbox IP addresses. Furthermore, network
artifacts can help identify previously analyzed malware
and avoid re-analyzing them [43]. For example, Bayer et
al. [44] rely on both network system calls and network
traffic traces observed on the wire.

Most malware in the wild use anti-analysis tactics [3],
[42], [43], [45] to evade detection and reverse engineer-
ing. Specifically, anti-analysis papers deal with detecting

anti-analysis samples [3], [9], [42], [45], studying anti-
analysis tactics [46], [47], bypassing anti-analysis meth-
ods [48]–[51], and improving the resource utilization of
sandboxes [43], [44], [52]. Fundamentally, anti-analysis
papers improve sandboxes’ transparency and scalability.
For example, Willems et al. [49] propose a transparent
and scalable monitoring technique using CPU features for
anti-analysis malware.

Summary. In anti-analysis applications, end-users use
variations of sandbox parameters to identify divergence,
environment sensitivity, and alternate behavior that can
serve as a baseline for their applications. Network artifacts
appear to be more stable than system artifacts, and they
can serve as an indicator for detecting anti-analysis behav-
ior. However, in many cases, malware behavior is directly
dependent on the malware operator’s actions, which can
change over time and across different environments.

4. Sandbox Applications and Usage

This section presents the systematization of sandbox
practices for each application category. We distill these
practices into a set of guidelines. These guidelines are
not exclusive to each category, and end-users should use
them to guide their experimental setups. We emphasize
that some of the guidelines may appear to experts as com-
mon knowledge, but they are not documented with clear
examples. Our approach is meant to document and dissem-
inate sandbox practices across different areas of security,
including interdisciplinary security research. For example,
researchers in law and policy can apply empirical data
to support cyber governance [53], military research in
cyberspace [54], and cyber foreign policy [55]. Additional
areas include management such as cyber insurance [56]
and human-computer interaction (HCI) such as human
factors in malware detection [57].

Table 1 lists the systematized literature by Experiment
Metadata, Implementation, Monitoring, and Analysis Pa-
rameters. The experiment metadata documents the size
of the dataset and the artifact types, namely system (Sys)
or network (Net). The implementation section identifies
the type of sandbox in use, namely emulation (Emu.),
virtualization (Virt.), and bare-metal (Metal). The mon-
itoring section documents how each paper implements
its monitoring technique, namely inside-guest user-space
or kernel space (IGU/IGK) and outside-guest online or
offline monitoring (OGOn/OGOff ). The online and offline
approach refers to artifact collection during (online) or
after (offline) the malware execution, respectively. The
analysis parameters document the experiment setup for
custom inputs, analysis environments (Env.), number of
analyses (Exec-n), and analysis period (Exec-t) per paper.

4.1. Sandbox Implementation

Detection Papers. The role of a sandbox can influence
the choice of implementation as shown in Table 1. We
note that we found no evidence or correlation showing one
implementation is better than another. Rafique et al. [34] is
the only detection work that considers using more than one
implementation (emulation and virtualization) to improve

4



TABLE 1: Systematization using our framework across implementations, monitoring, and analysis parameters.

App. Paper Experiment Metadata Implementation Monitoring Analysis Parameters Safety/Ethics
Size Sys Net Emu. Virt. Metal IGU IGK OGOn OGOff Input Env. Exec-n Exec-t Discussed

D
et

ec
tio

n

Kirda06 [27] 33 ✓ ✓ ✓ ✓ 50s
Li07 [31] 1.4K ✓ ✓ ✓ ✓ ✓ 3 170s ✓

Chris07 [58] 16 ✓ ✓ ✓ ✓ ✓ 3 1m-4m ✓
Litty08 [29] 9 ✓ ✓ ✓ ✓ ✓

Marti08 [59] 7 ✓ ✓ ✓ ✓ ✓
Rieck08 [30] 10K ✓ ✓ ✓ ✓

Yen08 [37] 4 ✓ ✓ 1 1h
Bayer09 [33] 75K ✓ ✓ ✓ ✓ ✓
Anton10 [28] ✓ ✓ 5m ✓
Fredr10 [60] 912 ✓ ✓ ✓ 2m ✓
Perdi10 [36] 25.7K ✓ ✓ ✓ 5m
Jacob11 [4] 37.5K ✓ ✓ ✓ ✓ ✓ 4m

Ander11 [61] 1.6K ✓ ✓ ✓ 5m
Cui12 [32] 150K ✓ ✓ ✓ ✓ 1 2m

Wille12 [62] 7K ✓ ✓ ✓ ✓
Tegel12 [35] 200 ✓ ✓ ✓ ✓
Palah13 [63] 2.3K ✓ ✓ 1 2m
Rafiq13 [34] 16K ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓

Canza15 [64] ✓ ✓ ✓ 0.2s ✓
Kharr16 [65] 148K ✓ ✓ ✓ ✓ ✓ 20m ✓

Xu17 [66] 320 ✓ ✓ ✓ ✓ 2 24s
Kim17 [26] 100K ✓ ✓ ✓ ✓ ✓ 1m ✓

Sun20 [2] 20K ✓ ✓ ✓ ✓ ✓
Zhang20 [67] 1K ✓ ✓ ✓ ✓ ✓ ✓ 1m

Count Summary 79% 50% 17% 54% 21% 38% 17% 46% 8% 38% 33% AVG 1.24 46%

O
bs

er
va

tio
na

l
St

ud
ie

s

Royal06 [68] 3.4K ✓ ✓ ✓ ✓ 20m
AbuRa06 [69] 192 ✓ ✓ ✓ ✓

Egele07 [17] 21 ✓ ✓ ✓ ✓
Baile07 [38] 8.2K ✓ ✓ ✓ 5m ✓
Kang07 [70] 2.9K ✓ ✓ ✓ ✓ 35s-70s
Polyc08 [71] 307K ✓ ✓ ✓
Holz08 [72] 5 ✓ ✓ ✓ ✓ ✓
Shari09 [73] 16 ✓ ✓ ✓ ✓
Cabal09 [7] 1 ✓ ✓ ✓ ✓ 1 ✓

Stone09 [74] ✓ ✓ ✓ ✓ ✓ ✓
Quist09 [75] 3 ✓ ✓ ✓ 5m-12h ✓
Bayer09 [76] 900K ✓ ✓ ✓ ✓ 4m
Holz09 [77] 2K ✓ ✓ ✓ ✓ ✓ >1m

Kolbi10 [39] 6 ✓ ✓ ✓ ✓ ✓ 1 30m ✓
Palea10 [40] 200 ✓ ✓ ✓ 15
Krish10 [78] 10 ✓ ✓ ✓ ✓ ✓ ✓ 7d

Compa10 [79] 11K ✓ ✓ ✓ ✓ ✓ 1
Leita10 [80] 6.3K ✓ ✓ ✓ ✓ 1 4m
Nadji11 [81] 2K ✓ ✓ ✓ ✓ 7 5m ✓

Neugs11 [82] 8.3K ✓ ✓ ✓ ✓ ✓ 6m ✓
Cabal11 [83] 9.1K ✓ ✓ ✓ ✓ ✓ 2 ✓
Rosso12 [84] 243K ✓ ✓ ✓ ✓ 1h ✓
Lindo12 [85] 381 ✓ ✓ ✓ ✓ 33-88 2m ✓

Hu13 [41] 5.6K ✓ ✓ ✓ 2m
Jagpa15 [86] 100K ✓ ✓ ✓ ✓ ✓
Kharr15 [87] 4K ✓ ✓ ✓ ✓ ✓ 1 45m ✓
Yadeg15 [88] 5 ✓ ✓ ✓ 3

Ugart15 [8] 7K ✓ ✓ ✓ 30m
Thoma15 [89] 25M ✓ ✓ ✓ ✓ ✓

Han15 [90] 1M ✓ ✓ ✓
Ugart16 [91] 3 ✓ ✓ ✓ ✓ 3

Thoma16 [92] 1.47M ✓ ✓ ✓ ✓ ✓
Lever17 [93] 26M ✓ ✓ ✓ >5m
Farin17 [94] 19K ✓ ✓ ✓ ✓ ✓ ✓ 8 35m ✓
Cozzi18 [5] 10.5K ✓ ✓ ✓ ✓ 5m ✓
Haq18 [95] 7.8K ✓ ✓ ✓ 10m
Barr21 [10] 31.8M ✓ ✓ ✓

Count Summary 76% 46% 46% 57% 0% 27% 8% 78% 16% 30% 27% AVG 2.68 35%

A
nt

i-A
na

ly
si

s

Chen08 [47] 7K ✓ ✓ ✓ ✓ ✓ 3 2m
Balza10 [3] 10 ✓ ✓ ✓ ✓ ✓ ✓ 2

Round10 [48] 200 ✓ ✓ ✓
Bayer10 [44] 11K ✓ ✓ ✓ ✓ 3 20s-300s
Lindo11 [42] 1.8K ✓ ✓ ✓ ✓ ✓ ✓ 12

Kawak13 [50] 7 ✓ ✓ ✓ 3 5m
Kirat14 [45] 110K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 4

Xu14 [51] 1.4K ✓ ✓ ✓ ✓ ✓ 5m
Kirat15 [9] 3.1K ✓ ✓ ✓ ✓ ✓ 2

Vadre16 [43] 1.6M ✓ ✓ ✓ 6m
Kuchl21 [52] 84K ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15m

Count Summary 912% 361% 642% 649% 185% 361% 185% 825% 185% 273% 4538% AVG 2.85 0%

the chances of observing malicious network artifacts.
These artifacts are obtained through a monitoring module
that runs either inside or outside the analysis environment
and each technique makes a trade-off between the four
sandbox properties (see Appendix A). Lastly, we find that
virtualization-based sandboxes appear to be favored for
detection systems.

Observational Papers. Interestingly, all surveyed works
rely on emulated or virtualized sandboxes. For applica-
tions that use system-based artifacts, such as unpacking
and automated reverse engineering, emulated and virtu-

alized implementations are more flexible and easier to
extend. For example, Caballero et al. [7] make use of
in-memory data taint-flow analysis built on top of an em-
ulated sandbox to automatically reverse engineer custom
malware protocols. Such implementation is more involved
on a bare-metal system. For network-based artifacts, emu-
lated and virtualized implementations provide better scal-
ability and resource utilization than bare-metal sandboxes.
From a scalability approach, Barr-Smith et al. [10] ana-
lyze over 31M samples using virtualization-based sandbox
to understand how malware abuses system services and

5



utilities. From a longitudinal approach, Bayer et al. [76]
study malware using an emulation-based sandbox, Anubis,
which analyzed 900K samples over five years. However, in
those five years, Anubis has gone through several feature
enhancements that affect the sandbox reports, which create
inconsistent results due to missing artifacts. A drawback
for emulated and virtualized sandboxes is that the hard-
ware transparency is imperfect and has implications with
regards to anti-analysis [14]. Nevertheless, it appears that
observational studies make a trade-off between hardware
transparency and scalability and extensibility by favoring
emulated and virtualized sandboxes.

Anti-analysis Papers. One of the unique aspects of anti-
analysis papers is that they utilize multiple implementa-
tions concurrently. This approach compromises between
transparency, scalability, and extensibility to provide better
analysis coverage. Concurrent analysis curbs the time and
location variability. Time variability refers to analyzing
a stale malware sample versus a fresh sample with an
active C&C server. Location variability refers to analyzing
malware samples from the same geographical location of
the sandbox’s network. Controlling for time and location
can potentially identify malware behavior divergence due
to the sandbox implementation [96].

For example, Chen et al. [47] and Kirat et al. [45] use
multiple sandbox implementations to study anti-analysis
behavior. The works detect anti-analysis and identify eva-
sion tactics [9] using sandbox systems like Ether [97],
Cuckoo [98], and Anubis [99]. Anti-analysis papers pro-
vide working examples for end-users to deploy a robust
sandbox that can potentially overcome many of the anti-
analysis tactics found in the wild. However, deploying
such a sandbox is far from trivial and requires heavy
engineering efforts. Moreover, because malware authors
are always improving their tactics, sandboxes should be
maintained to deal with new anti-analysis tactics. Lastly,
given the adversarial nature of anti-analysis applications,
researchers appear to prioritize extensibility, which emu-
lated and virtualized sandboxes offer.

Takeaway. Prior works appear to prioritize isolation,
extensibility, and scalability over hardware transparency.
The extensibility property can mitigate some of the hard-
ware transparency issues by patching system calls to de-
ceive malware. However, malware can use side channels,
like timers, to identify hardware implementation incon-
sistencies. Although bare-metal sandboxes have perfect
hardware transparency, they do not appear to be widely
used, as seen in Table 1.

4.2. Monitoring Techniques

Detection Papers. Table 1 documents the monitoring
components in use by detection papers. Monitoring tech-
niques impact the transparency and scalability of a sand-
box. Earlier papers rely on inside-guest user-space and
kernel-space components for behavior monitoring because
they are easier to implement and provide behavior context.
For example, Jacob et al. [4] use inside-guest hooking for
the Winsock APIs because it provides data flow context
for the send and recv system calls. On the other hand,
monitoring techniques inside the analysis environment can

violate the transparency requirements and make it easier
for malware to evade.

Fredrikson et al. [60] rely on an inside-guest user-
space monitoring tool, similar to strace, to collect system
calls and note that malware can thwart their monitoring
tool. However, Anderson et al. [61] address this problem
by using Ether [97], which uses an outside-guest monitor-
ing component. Another approach is to use inside-guest
kernel monitoring, which provides better transparency and
it is easier to extend to bare-metal systems [67]. Outside-
guest approaches can include network traffic monitoring or
use memory introspection as shown by several works [33],
[59], [61]. Anubis [99] uses outside-guest monitoring but
requires environment modification to log system calls [4].
In addition, Sun et al. [2] combine two monitoring tech-
niques, namely inside-guest (API hooking) and outside-
guest online, to detect malware DNS behavior.

Monitoring techniques also have a timeliness property
that detection papers can customize based on their needs.
Timeliness refers to whether detection is in real-time or
post-analysis. For a post-analysis example, Cui et al. [32]
use an outside-guest offline approach by inspecting crash
dump memory images to detect malware. For a real-
time example, Canzanese et al. [64] use the first 200ms
of analysis to detect malware. Detection papers leverage
varying monitoring techniques to address challenges such
as contextualizing behavior and balancing transparency
and scalability. Using expert rules like Sigma and Yara to
contextualize behavior artifacts should be carefully con-
sidered since malware behavior changes across time [96].
In addition, the variations of monitoring techniques can
create a split-view in the observed malware behavior [4],
[27], [30], [58], [60]. For example, a network trace and a
system call trace provide different levels of artifact context
such as event order and dependency.

Observational Papers. Table 1 documents the differ-
ent monitoring techniques in use by observation papers.
Most papers rely on monitoring components that reside
outside the analysis environment with some exceptions.
For example, unpacking [68] with debuggers, tracking
browser extension abuse [86], [89], [92], capturing system
call sequences [41], and tracking malware operations [72],
[74], [77], [94] rely on inside-guest user-space monitoring.
The only factor that seems to influence the use of inside or
outside monitoring components is the default monitoring
implementation available in a sandbox. For example, sev-
eral works [72], [77] use CWSandbox [100], which imple-
ments an inside-guest user-space Windows API hooking.
Other works [86], [89], [92] build a customized sandbox
to study browser extensions. These approaches help create
consistency for individual studies, but other researchers
cannot reproduce or verify the results.

Moreover, the implementation of inside-guest monitor-
ing can vary from one sandbox to another. For example,
the monitoring of Windows APIs (memory, file system,
network), the hooking techniques (injection, instrumen-
tation, direct memory modification), and the logging of
artifacts (function names, parameters, and return values)
can create split-views of malware behavior. Kernel-space
implementations may offer more transparent monitoring
that provides an encompassing view of malware behavior.
For example, Kang et al. [70], Kharraz et al. [87], and

6



Cozzi et al. [5] use inside-guest kernel monitoring to
unpack malware, study ransomware, and study Linux mal-
ware, respectively. Transparency is also influenced by the
monitoring implementations, which anti-analysis malware
can potentially detect and hide their malicious behavior.

Outside-guest monitoring can improve sandbox trans-
parency. Ugarte-Pedrero et al. [8] use outside-guest sys-
tem call tracing to study unpackers through system ar-
tifacts. Furthermore, network artifact collection should
always prioritize outside-guest monitoring to be transpar-
ent. Outside-guest network monitoring can extract IRC
C&C servers [69], peer-to-peer encryption keys [72],
and malware hosting infrastructure [13], [83]. Although
network captures lack the system context of the behavior
(network-to-process id), they can provide a consistent
view of malware behavior. For example, Polychronakis
et al. [71] monitor the network behavior of malware in a
sandbox to study how malware interacts with the C&C
server and present a network view of the interaction. In
general, outside-guest monitoring tools appear to be the
most popular for collecting network artifacts.

Anti-analysis Papers. Anti-analysis papers often rely
on multiple monitoring components with tailored binary
analysis to detect and overcome anti-analysis malware.
For example, Balzarotti et al. [3] extend the capabilities
of the Anubis sandbox to support record-and-replay of
API parameters and return values using two different
systems (a reference and an experiment system). Most
anti-analysis papers use outside-guest monitoring methods
to capture malware behavior that relies on emulation-
and virtualization-based sandboxes. A popular approach
to detecting and bypassing anti-analysis malware is by
incorporating bare-metal-based sandboxes to provide a
transparent hardware environment, but their monitoring
techniques can be limited, and in some cases, they can be
evaded by malware [101]. These limitations give the users
a trade-off between transparency and extensibility. Ap-
plications seem to compromise between the two choices
by leveraging binary instrumentation to collect behavior
profiles [48], [51] or rely on a customized kernel module
to monitor behavior [3], [42] for inside-guest monitoring.

Takeaway. Outside-guest online monitoring appears to be
the most common approach, while outside-guest offline is
the least common. Detection papers often rely on multiple
monitoring techniques and make use of inside-guest mon-
itoring more often. However, within inside-guest, user-
space monitoring tools are more common across all ap-
plication categories. Anti-analysis malware can detect and
evade monitoring tools by circumventing hooking and
delaying execution.

4.3. Analysis Parameters

Detection Papers. A third of the detection papers specify
input for the sandbox analysis. They rely on both generic
and custom input. For example, a custom input can induce
activities by opening a specific website in a browser [27]
or opening a specific version of a document reader to
trigger an exploit [62]. Generic input can simulate system
activities such as mouse movements [34], [67], clicking
windows [26], or user browsing [60]. In addition, input

can be applied to the network application to simulate
internet traffic [58], modify traffic [59], simulate network
services [33], or redirect traffic to a honeypot [64].

A third of the detection papers customize their envi-
ronment by installing software to trigger malware behavior
such as browsers [27] or document readers (PDF) [31],
[66]. Environment customization can entail populating a
user profile to create an environment that looks similar
to a real user’s system to lure malware ransomware [65].
For instance, Willems et al. [62] use multiple environ-
ments with different versions of Adobe Reader to detect
malicious PDF files. The environment customization can
increase the chances of triggering malicious behavior,
which can provide better coverage. Conversely, Zhang et
al. [67] customize the system environment to contain sand-
box artifacts that malware tends to evade to thwart mal-
ware infections. A fourth of the detection papers consider
analyzing malware multiple times [31], [58]. However,
the majority of papers either do not explicitly state the
number of executions or we assume it is at least once. The
number of analyses is associated with other parameters
such as different environments or analysis time (Exec-t).
For example, Xu et al. [66] run suspicious PDF documents
in two environments, namely macOS and Windows, to
measure the divergence in the program behavior, which
requires the sample to run twice.

Christodorescu et al. [58] run malware samples three
times with varying analysis times (1 min, 2 min, and 4
min) to identify dormant behavior. Yet, the time parameter
seems to be less related to detection requirements and
more subjectively chosen. Several works [4], [28], [32],
[36], [60], [63] choose a time interval between two min-
utes and six minutes with no direct justification. However,
the time range among detection papers can range from
very short (milliseconds) to very long (an hour). Can-
zanese et al. [64] detect and terminate suspicious appli-
cations in a production environment by running malware
for as short as 200 ms. On the other hand, Yen et al. [37]
collect malware network traces for one hour based on
the assumption that an hour provides sufficient time for
malware to communicate with the C&C server. Recent
work by Kuchler et al. [52] systematically experiments
with the time parameter and suggests that a two-minute
time interval is sufficient for most sandbox applications.

Observational Papers. A third of the observational
papers surveyed use a sandbox with custom input. These
inputs simulate user activities to create an event [77],
[87], trigger malicious browser extensions [17], [86], track
ad injection abuse [89], attract malware operators [94],
or study pay-per-install malware [92]. Furthermore, some
papers specify input through network service simula-
tion [71], [84] and network traffic manipulation [83] to
extract key indicators for their study. Since some malware
may have a stale C&C infrastructure, providing network
inputs can be an effective approach to analyzing malware
in a sandbox. Many of the works have a priori knowledge
of the type of malware under analysis, which helps end-
users craft the right inputs for the sandbox. However, a
priori insights require end-users to manually analyze or
reverse engineer the malware under investigation.

A fourth of the observational papers customize their
environment. Farinholt et al. [94] study the tactics of

7



malware operators using eight unique environments with
different personas (default install, gamer, doctor, politi-
cian, academic, student, bitcoin miner, and teller) to lure
malware operators to interact with an infected host. Addi-
tionally, Paleari et al. [40] use multiple analyses, running
each sample 15 times, to identify divergence in behavior
under different environments (locale, timezone, installed
software) and to generate a generic remediation model for
post-infection cleanup. Environment customization plays
an important role in studying malware, but surprisingly it
is rarely utilized by the surveyed papers. Environment ar-
tifacts give the analysis environment a sense of wear-and-
tear [23] that some malware will check before revealing its
intended behavior. In fact, Vadrevu et al. [43] report that
as high as 62% of the malware samples they study (1.6M
samples) lack sandbox activities, which can potentially be
related to environmental factors.

Less than 20% of the observational papers execute the
malware more than once. Observational papers use multi-
analysis to identify anti-vm behavior [83] and analyze
diverging behavior in different environments [40], [81],
[94]. For example, Nadji et al. [81] analyze malware
samples multiple times with varying network rules to iden-
tify alternative malware communication channels. Some
observational applications require executing the malware
multiple times to incrementally learn about code con-
straints to discover its behavior. For instance, unpacking
papers [88], [91] run malware multiple times to identify
control dependencies in layered obfuscation.

Additionally, the analysis period in a sandbox can
affect the results. We observe a wide range of execu-
tion times varying from 35 seconds to seven days but
most of the papers analyze malware an average of five
minutes. Krishnan et al. [78] use a sandbox to evaluate
their provenance-tracking system where they infect an
environment for seven days, which is a less common
use case. Lindorfer et al. [85] present a novel approach
that simulates a long analysis period (three months) using
save-and-restore analysis. They execute several samples
for two minutes then snapshot the sandbox’s execution
state to be restored and run again the next day. They repeat
the analysis between 33 and 88 days to study malware
code evolution through repetitive but finite execution.

Other works analyze malware until an event is ob-
served, such as C&C server communication [69], decryp-
tion key exchange [72], download of an executable [83],
or any other event-based observation [86], [89], [92].
Some hybrid approaches combine event-based and time
threshold parameters such as the work of Ugarte-Pedrero
et al. [8], which defines a maximum time-out threshold of
30 minutes with rules for adaptive execution time.

Anti-analysis Papers. Similar to observational papers,
anti-analysis papers retroactively use custom input. For
example, Balzarotti et al. [3] and Xu et al. [51] collect
API calls, API parameters, and function return values
then use them as input for subsequent analyses. These
works differ in their goal, Balzarotti et al. [3] detects
anti-analysis malware whereas Xu et al. [51] bypass anti-
analysis to capture the malware behavior. Furthermore,
both works utilize multi-analysis environments to observe
how malware behaves in different settings. Xu et al. [51]
dynamically adapt the environment by running multiple

analyses in parallel and selectively terminating instances
that do not reach the target malicious code.

Other works aim to improve a sandbox’s resource
utilization. They do this by identifying polymorphic mal-
ware samples that have the same initial behavior and then
terminate the sandbox analysis early. Bayer et al. [44] use
generic behavior profiles generated from historic malware
reports to selectively analyze samples that are different
from previously analyzed malware. Similarly, Vadrevu et
al. [43] propose an optimization for bare-metal sandboxes
that only relies on network traffic to prioritize new mal-
ware samples. On the other hand, Roundy et al. [48] pro-
pose a selective hybrid analysis approach that combines
static and dynamic analysis to optimize binary instru-
mentation for sandboxes. Furthermore, multiple analyses
are sometimes associated with a customized environment.
Lindorfer et al. [42] perform 12 parallel analyses using
a variation of two monitoring techniques (inside- and
outside-guest) and three different custom environments
(software, user privilege, and locale). Their work com-
bines variations from the monitoring and analysis param-
eter component seen in Figure 1 for a multi-analysis ap-
proach. Similarly, Kirat et al. [45] use one custom environ-
ment that contains saved credentials, browser history, and
user document files but vary the sandbox implementations
(emulation, virtualization, and bare-metal).

It appears to be a common practice for anti-analysis
applications to analyze malware more than once since
they require varying one or more features in each com-
ponent of the sandbox. However, there are exceptions
where researchers evaluate new sandbox technology (i.e.
processor-level monitoring) using anti-analysis malware to
demonstrate its efficacy [49]. Similar to detection appli-
cations, the execution time for the anti-analysis papers is
between 20 seconds to 10 minutes. Overall, anti-analysis
papers demonstrate promising use of sandboxes for ro-
bust and high-fidelity results but can require significant
engineering efforts.

Takeaway. We find that less than 40% of the papers
document their analysis parameters. Unfortunately, this
practice creates a reproducibility and a knowledge gap.
Analysis parameters appear to be one of the most impor-
tant components for sandboxes and can greatly improve
the chances of observing malware behavior. Moreover, the
analysis parameters have a large array of configurations
that end-users should narrow down by understanding how
sandbox artifacts are used in their application.

4.4. From Practices To Guidelines

Our systematization finds that sandbox deployments
are complex and should be carefully incorporated into
security applications. End-users should not depend on
generic sandboxes since their implementations, configura-
tion, and analysis parameters may negatively impact out-
comes. For example, the results may be skewed towards
more prominent malware families [102]. Overall, there is
no “silver bullet” practice for sandbox deployments, and
applying advanced sandbox techniques is far from trivial.
To help end-users navigate some of the complexities of
using sandboxes, we propose several guidelines based on
our in-depth analysis of the literature.

8



Guideline-1: Simplifying sandbox deployments. Com-
partmentalize components into manageable and config-
urable components. Simplify deployments by indepen-
dently configuring each component. Use outside-guest
offline monitoring techniques to simplify deployments.
Outside-guest offline monitoring tools are decoupled from
the implementation and analysis environment and can
potentially provide sufficient analysis context.

Guideline-2: Understanding sandbox trade-offs. Use
emulated and virtualized sandboxes as they offer better
extensibility and scalability. Bare-metal sandboxes have
perfect hardware transparency, but can be difficult to
deploy for common security tasks.

Guideline-3: Improving monitoring transparency.
Masquerade monitoring tools inside the analysis environ-
ment by randomizing their names and installation paths.
Collect network traffic from outside the analysis environ-
ment. Minimizing the forensic tools inside the analysis
environment can potentially thwart common malware eva-
sion tactics.

Guideline-4: Improving environment transparency.
Use common triggers in the analysis environment such as
generic mouse/user interaction, software installation, and
randomize user profiles. Use context about known mal-
ware to tailor the environment. Simulate internet services
for stale or missing C&C servers. Iteratively analyze eva-
sive malware to identify and address factors that contribute
to the anti-analysis tactics.

Guideline-5: Testing sandbox deployment. Evaluate
the environment configuration using malware with known
behavior and contrast observed versus expected behav-
ior. Test a sample of malware corpus on two different
environments (highly configured vs. no configuration) to
document the impact on observed behavior. Identify the
environmental factors that inhibit the behavior of malware
(i.e. missing software dependencies) and address them
adequately.

Guideline-6: Evaluating sandbox results. Collect arti-
facts from at least two monitoring components to compare.
Evaluate the correctness of the sandbox artifacts by refer-
encing the network artifacts and activities. Use a reference
and experimental sandbox deployment to identify anti-
analysis behavior quickly. Normalize the results of the
sandbox from different versions of the sandbox.

Guideline-7: Optimizing sandbox analysis. Analyze
malware for two minutes initially, but also test other
thresholds. Configure event-based triggers and timeout
thresholds to end the sandbox analysis when malware
crashes or desired event is observed. Simulate long-lived
malware executions by snapshotting and saving the analy-
sis environment to restore/resume the malware’s execution
later. Use network artifacts, such as the malware’s C&C
server, to identify polymorphic samples to avoid reanalyz-
ing the same malware.

Guideline-8: Safety and Ethics. Ensure your planned
experiment adheres to research community ethical norms
and aligns with ethical considerations outlined by the
security community [103], [104]. Seek approval from your
institute or administrator point of contact before conduct-
ing malware experiments. Ensure the malware analysis

system is adequately isolated from real systems and net-
works and adheres to administration policy. Configure
the minimum network services in the malware analysis
network to avoid unintended malware attacks. Employ
traffic shaping techniques, such as traffic redirection and
reflection, to limit the impact of malware analysis on the
internet.

5. Evaluation: Sandbox Guidelines

In this section, we evaluate the proposed guidelines
systematically through a set of empirical experiments. Our
goal is to demonstrate from the end-user perspective that
the choice of different sandbox configurations can affect
the resulting findings. We refer to the work of Yong Wong
et al. [25] for an inside look at the practice of malware
analysis by security experts. Specifically, we use their
framework to evaluate our proposed guidelines based on
three types of tasks.

1) Objective 1: Create a blocklist based on sample
hash, IP addresses, and domains (Tier 1-Task 1).

2) Objective 2: Extract malware behavior based
on network and system artifacts (domains, IP
addresses, files, registries, and processes) (Tier
2-Task 1).

3) Objective 3: Assign a malware family label
based off the extracted network and system ar-
tifacts (Tier 2-Task 2).

Yong Wong et al. also highlight additional tasks such
as generating reports and tracking tactics, techniques, and
procedures (TTP) [105]. We exclude those tasks from the
evaluation because they require a human-in-the-loop to
assess the sandbox results. On the other hand, the three
objectives can be measured empirically (either observed
or not observed), which excludes any human bias. There-
fore, we use the three objectives to demonstrate how our
proposed guidelines can help end-users improve their use
of sandboxes for the prescribed tasks.

5.1. Overview

Our empirical experiment takes the following ap-
proach. First, we configure and deploy a sandbox based
on the guidelines proposed in the systematization, which
we refer to as a guided sandbox (G). Second, we de-
ploy another sandbox that runs with default settings and
minimal required configurations (networking, disable anti-
virus, create user profile, etc.), which we refer to as
an unguided sandbox (U). We then collect 1, 471 recent
malware samples spanning eight popular malware families
and build ground truth signatures based on leaked source
code, open source code, and manual malware analysis.
The ground truth is a set of signatures for file, registry,
process, and network artifacts that each family is expected
to generate when executed in a sandbox. We then evaluate
our signatures for a benign binary that we run in both
sandboxes and ensure that our signatures do not match
against any of the artifacts produced by the benign sand-
box analysis (identify false positives). We then execute
each malware sample in both sandboxes and observe
the behavior across the four categories of artifacts (file,

9



registry, process, and network). Based on the observed
matches, we empirically quantify the execution of each
malware family in both sandboxes in the context of the
three objectives mentioned earlier.

5.2. Guided Sandbox Setup

We apply guideline-1 and use our framework in Fig-
ure 1 to choose the implementation technology, monitor-
ing technique, and analysis parameters.

Guideline-2: Implementation Trade-offs.

1) We use virtualized sandboxes because they offer
better extensibility and scalability.

Guideline-3: Monitoring Transparency.

1) We minimize the forensic tools inside the analysis
environment and collect network traffic outside
the analysis environment using Second-Level Ad-
dress Translation (SLAT) technology.

Guideline-4: Environment Transparency.

1) We gather context on the nature of malware fam-
ilies from public reports to install the software
that the malware targets.

2) We implement a user-interaction script to induce
mouse and keyboard clicks. We install 18 differ-
ent software for file transfer (WinSCP, FileZilla,
etc.), mail clients (OperaMail, Thunderbird, etc.),
and instant messengers (ICQ, Skype, etc.). Ta-
ble 6 in Appendix A contains the complete list.

3) We populate the analysis environment with 280
fake documents across the Desktop, Documents,
Music, Videos, and Pictures. We include activ-
ity artifacts (saved passwords, cookies, etc.) for
browsers, mail clients, instant messengers, and
file transfer applications.

Guideline-5: Test Sandbox Deployment.

1) We manually analyze a random sample of mal-
ware families to understand their expected behav-
ior. We use this information to test our deploy-
ment for malware execution.

2) We evaluated our malware corpus on two sand-
box deployments, namely guided (G) and un-
guided (U) and measured the observed artifacts.

Guideline-6: Evaluate Results.

1) We evaluate both inside-guest user-space hook-
ing and outside-guest introspection. We use Intel
Extended Page Tables (EPT), for outside-guest
online monitoring.

2) We inspect the network, file, registry, and process
artifacts to identify malware execution.

Guideline-7: Optimize Analysis.

1) We configure a two-minute timeout for the anal-
ysis. However, we also apply an anti-evasion
approach that identifies large parameter values

for the sleep system call and modify it to smaller
values for both sandboxes.

2) We terminate the analysis if the malware execu-
tion crashes or the two-minute timeout elapses to
optimize the compute resources.

Guideline-8: Safety and Ethics.

1) We conducted our experiment in a dedicated
malware network that supports isolation, minimal
services (DHCP and DNS), and traffic shaping
(forward, drop, rewrite, redirect, and reflect) to
prevent attacks such as spam and DDoS.

We deploy the unguided sandbox with minimal config-
uration to allow us to execute malware. For example, we
disable the anti-virus engine (Windows Defender) inside
the guest to avoid the samples from being quarantined. All
non-essential configuration parameters are left untouched.

5.3. Malware Dataset

Malware Family Choice. We use three sources of
threat intelligence to identify actively used malware
families, namely Malware Bazaar [106], CyberCrime
tracker [107], and Any.run’s malware trends [108]. At
the time of writing, the five most popular malware fami-
lies are AgentTesla, Formbook, Lokibot, Ponystealer, and
AZORult. We prioritized malware families based on the
availability of source code. We found leaked source code
for Lokibot, Ponystealer, and AZORult. During our search
for source code, we found additional source code for
malware families that also appear to have been popular
in the past, such as Amadey, Neutrino, and BlackNET.
Although these families are not the most popular malware
found in the wild today, we found that they are still in use
and included them for a more complete evaluation.

Malware Collection. We sourced the malware binaries
from VirusTotal using a combination of AV labels, Yara
rules [109], Sigma rules [110], and IDS rules [111]. We
use AVClass [112] for malware family labeling. We use
strict criteria where all four indicators (AV, Sigma, IDS,
and Yara) must agree on the malware family. We collected
the most recent samples seen in VirusTotal (the last two
weeks) and limited them to a maximum of 200 binaries
per family. In the case of Neutrino, Amadey, and Azorult,
this maximum could not be reached because our selective
criteria of four indicators did not match 200 binaries from
VirusTotal. Furthermore, we sampled 15 binaries per fam-
ily and manually analyzed them statically and dynamically
to ensure that the malware families are correctly classified.
In total, our malware dataset consists of 1, 471 malware
samples spanning eight different malware families.

5.4. Methodology

Malware Code Execution Order. By inspecting the
source code available for some families and manually
analyzing others, we identified particular malware patterns
during execution. More specifically, Figure 2 is an illustra-
tion of the general behavior observed for a malware binary
during execution. We find that malware will attempt to

10



Persistence Capability C&C 
Communication

Flow of Malware Execution

Malware
Lifecycle

Sandbox
Artifacts

File Registry File Registry

Process

File Network

Figure 2: Typical execution flow of malware.

persist on the system by moving the malware binary from
the original execution path (i.e. Desktop or Downloads
folder) and placing itself in the user profile directory (i.e.
Users/<User Name>/). Then the malware will create or
modify the system’s registry to create a service or add it-
self to the startup entry to execute on system startup. These
activities generate observable artifacts during execution in
the form of file and registry creation, modification, and
deletion. Figure 2 depicts this process by mapping the
malware execution lifecycle (orange box) to the observed
artifacts in a sandbox (green).

Similarly, we observe that the capability deployment
phase of a malware (stealing credentials, dropping mal-
ware, privilege escalation, etc.) creates observable sand-
box artifacts such as file, registry, and process (mutex)
creation, modification, and deletion. Eventually, malware
will attempt to establish communication with the C&C
server to send data or receive commands. This phase adds
an additional category of sandbox artifacts, namely the
network communication (domains and IP addresses). By
adapting a MITRE ATT&CK-like [105], [113] framework,
we can generalize the observable artifact categories into
four temporally ordered classes, namely files, registry,
process, and network (green boxes). This approach allows
us to measure and quantify the execution of the malware
binaries on a spectrum of observable sandbox activities.
The spectrum of artifacts allows us to measure the full,
partial, and failed execution of malware binaries.

Artifact Ground Truth. We separate the artifacts into
system and network categories. System artifacts are cre-
ation, modification, or deletion of system resources such
as files, registry, and process mutexes. Network artifacts
are network traffic that can be observed outside the anal-
ysis environment. Based on our manual analysis of the
malware families, we create unique indicators from files,
registries, and process mutexes for each family to identify
how far each sample executed in the sandbox. We provide
a sample of these signatures in Table 7 in Appendix A.

For the network artifacts, we take every domain and
IP address from the sandbox execution and manually filter
them based on their usage. For example, some malware
will contact benign websites like pastebin to retrieve con-
figurations or commands. We are aware that pastebin is a
benign domain, but we include it in the malicious network
artifact list if the request is to download content. We
manually examined all popular benign domains (dropbox,
google drive, one drive, etc.) and inspected the HTTP
requests to label them as maliciously abused. This step is
necessary to help us quantify what malware fully executed
in the sandbox. Blindly removing all benign domains will
underestimate the execution and, therefore, be incomplete.

We observed 6, 610 domains and IP addresses across both
sandboxes and after removing benign domains and re-
quests, we were left with 5, 304 domains and IP addresses.

Quantifying Malware Execution. Using the system
signatures and network artifacts, we quantify the execution
of each binary in both sandboxes. We count the number of
signature matches per artifact category from the sandbox
reports. The search uses disjunctive matching and chains
all signatures together per category. For example, given
all file signatures, our search query chains the set of
signatures with an OR statement. If any of the signatures
match, we count that as an observable artifact from the
sandbox execution per category. More concretly, if a mal-
ware family is known to create a mutex with a specific
pattern, and we observe that pattern in the sandbox for
an instance of that family, then we count the execution
successful for the process category. For network category,
we look for exact matches for domains and IP addresses.
Since the ground truth is a manually curated list of mali-
cious domains and IP addresses, we use exact matches.

Identifying Malware Families. We rely on prior works
that use machine learning to classify malware fami-
lies [30], [33], [38], [114]. We use similar features found
in malware sandbox behavior reports to create a feature
vector for each malware and evaluate the family classifi-
cation accuracy, precision, recall, and F1 score. Table 2
summarizes the set of features used for the classification
of malware families. The high-fidelity malware labels are
given by the ground-truth and collection process outlined
earlier. We evaluated several algorithms, including differ-
ent configurations of SVM, logistic regression, classifica-
tion trees, KNN, and perceptron. In total, we evaluated 13
different configurations of machine learning algorithms.
Due to space limitations, we only present the top three
classifiers; however, complete results can be found in
Table 8 in Appendix B.

TABLE 2: A summary of features used by classifiers.

Category Features

File Count of created, modified, deleted,
file size, extensions, and paths

Registry Count of created keys, modified keys,
deleted keys, and key types

Process Count of mutex

Network

Count of dst IP, ports. TCP, UDP, RAW,
POST, GET, HEAD, response codes,
request and response size, and
DNS record types (MX, NS, A, etc.)

5.5. Results

Experiment Setup. Our guided sandbox uses VMRay,
a commercial cloud-based malware sandbox. VMRay
provides a virtualized implementation and outside guest
monitoring capabilities (Intel EPT hooks). The analysis
environment is configurable and provides rich features that
allow us to implement the guidelines mentioned earlier.
Our unguided sandbox uses a default installation of the
Cuckoo sandbox [98]. Cuckoo is a popular open source
malware analysis sandbox that is widely used in academia
and industry. Cuckoo is a good candidate for an unguided

11



sandbox because new users may initially be looking for
a free solution to experiment with. We deployed Cuckoo
on a local server with 12 CPU cores, 64 GB of RAM,
and 1 TB of disk storage. The analysis server is hosted
on an isolated network that has internet access. Each
malware sample is run for a maximum of two minutes to
mitigate any potential attacks from the infected sandbox
environment to other systems on the internet. We use
Scikit-learn [115] to implement the classification of the
malware family. Our experiment code is written in Python
and consists of 545 lines of code for report parsing, feature
extraction, and model training and evaluation.

TABLE 3: Summary of observed artifacts by categories
in guided (G; Green) and unguided (U; Red) sandbox
configurations.

Malware
Family

Sample
Count

File Registry Process Network
G U G U G U G U

Agenttesla 200 - - - -

Amadey 178

AZORult 195

Blacknet 200

Formbook 200

Lokibot 200

Neutrino 98

Ponystealer 200 - - - -

Objective 1: Malware Blocklist. To create a blocklist
of malicious domains and IP addresses, the malware must
run in full according to the model in Figure 2. This
task only requires network artifacts. For a given family
sample size (i.e. 200 binaries), we quantify how many of
those generated a malicious network artifact. We refer to
this number as the activity coverage for a given artifact
category. Table 3 summarizes the observed network arti-
facts for both sandboxes (G and U) under the “Network”
column. We find that the network artifact coverage for the
guided sandbox surpasses that of the unguided sandbox.
More precisely, we find that the guided sandbox provides,
on average, 4.5x activity coverage compared to the un-
guided sandbox. For example, 47.5% of the samples for
Agenttesla generate a malicious network artifact in the
guided sandbox versus 0% for the unguided.

However, the coverage within the guided sandbox
varies by malware family. For example, Amadey and Lok-
ibot have 95.51% and 94% coverage, respectively. On the
other hand, Blacknet and Formbook have 28% and 26.5%
coverage, respectively. A closer inspection of Formbook
revealed that the malware uses a set of aggressive anti-
analysis tactics like delayed execution, detect user-space
and kernel-space debuggers, detect virtual machines, and
evade system call hooks. We observe that 70.5% of Form-
book fail to execute due to anti-analysis. Approximately
17% of those samples detect the virtualization environ-
ment and 97% try to detect the monitoring tools.

For Blacknet, we find that malware crashes due to
missing system dependencies and incompatibilities with
Windows 10. Specifically, 72% of Blacknet samples crash
on execution. In addition, 50% of the samples produced
empty system call logs, suggesting that the executable
file was not loaded into memory. Finally, we find that

the guided sandbox provides coverage for most malware
families but has noticeably less coverage for newer mal-
ware families such as Agenttesla (47.5%) and Formbook
(26.5%). This is also apparent in the unguided sand-
box, where the older malware families, such as Neutrion
(37.76%) and Ponystealer (35.5%), have more coverage
than the more recently active families.

Objective 2: Malware Behavior. Extracting malware
behavior is the most common objective according to Yong
Wong et al. [25]. Malware behavior involves both system
and network artifacts. We leverage our hand-crafted signa-
tures based on manual analysis to quantify the execution
of malware families. By inspecting all four categories
independently, we can measure the observability of mal-
ware behavior. Table 3 presents the coverage observed
per category for both sandboxes. We find a significant
difference between guided and unguided sandboxes. First,
the file category shows that the guided sandbox provides
1.6x better behavior coverage than the unguided sand-
box. In particular, the biggest difference can be seen for
Agenttesla. We observe Agenttesla file artifacts in 74.5%
of the sample set for the guided sandbox compared to only
one sample (0.5%) seen in the unguided configuration. For
Neutrino, the unguided sandbox appears to have more file
activity, but upon closer inspection, we discovered that
these activities are associated with anti-analysis behavior.

Second, the registry activity of the guided sandbox
shows, on average, 4.6x better coverage than that of
the unguided sandbox. The unguided sandbox only had
matches for Neutrino and Ponystealer. We find that Ponys-
tealer is the only family that has a similar coverage of reg-
istry activity in both guided (76.5%) and unguided (71%)
sandboxes. Ponystealer creates similar registry artifacts,
but fails to execute network communication because the
malware detects the virtual machine environment (anti-
VM) in the unguided setup. The remaining families had
no observable activities in the unguided results. Third, the
process activity category only considers mutex creation.
Agenttesla and Ponystealer do not create mutex artifacts;
therefore, we could not quantify them. For the other fam-
ilies, we observe that the guided sandbox provides 11.3x
more process mutex activity than the unguided sandbox.
The unguided sandbox reports show mutex activity for
only Lokibot (10.67%) and Neutrino (14.29%). On the
other hand, the guided sandbox had 9x and 1.7x more
process activity (mutex) for Lokibot (94.67%) and Neu-
trino (24.49%), respectively.

Our manual analysis of the malware families with
source code shows that mutex is used to ensure that
only one instance of the malware is running at a time to
avoid multiple registration with the C&C. However, not all
instances of malware rely on this feature, and some reports
that have network activities (full execution) do not have
mutex activities, even though it is expected. We believe
that this can be attributed to custom variants of the mal-
ware family since some families have source code avail-
able. Nevertheless, we can see a significant difference,
empirically, between the guided and unguided sandbox.
When comparing the execution flow across families for
the guided sandbox, we observe variations in activities.
For example, 47.5% of Agenttesla samples attempt to
communicate with their C&C while 74% of the samples

12



exhibit file and registry activities. This indicates a partial
execution for the remaining 26% of samples.

A closer look shows that some Agenttesla samples
exhibit slightly different behavior due to the configurations
given by the malware operator. Similarly, Amadey can
profile the infected system for AV software; however, we
only observe this behavior in some samples, since this
would require the malware operator to activate the feature.
These customizations can create additional artifacts that
our signatures do not capture. This is especially the case
for malware samples that are configured to download
additional malware (first-stage downloaders). We would
observe the initial persistence stage, then a single capa-
bility that downloads and executes additional malware.

TABLE 4: A summary of the classification results for the
top three best preforming algorithms when using guided,
unguided, and combining sandbox artifacts.

Sandbox Type Algorithm A P R F1

Random Forest 96.52 96.77 95.30 96.57
Decision Trees 92.17 92.38 89.40 92.18Guided
KNN 90.43 90.66 88.00 90.41
Random Forest 70.31 69.21 62.80 68.43
Decision Trees 67.69 67.03 62.00 67.01Unguided
KNN 65.07 65.47 60.20 64.74
Random Forest 97.40 97.50 96.10 97.40
Decision Trees 94.81 94.96 91.90 94.80Combined
KNN 92.86 93.06 90.80 92.87

Improvement 0.88 0.73 0.78 0.83

Objective 3: Malware Families. We apply a machine
learning approach to classify malware families based on
sandbox artifacts. Table 4 presents the classification results
(in percentages) for the three top algorithms that perform
the best. We find a significant difference between the
guided and unguided sandbox results in terms of accuracy
(A), precision (P), recall (R), and F1 score. The random
forest algorithm performed the best out of the 13 different
configurations. We provide the complete results in Table 8
in Appendix B. When we combine the artifacts of both
sandboxes, we get a slight improvement of less than 1%.
We expect the guided artifacts to outperform the unguided
artifacts simply because the signal to differentiate between
malware families is present. Using the combine features
of both sandboxes, we see a negligible improvement.

To understand why this is the case, we performed a
Principal Component Analysis (PCA) to understand the
importance of the classification features. The five most
important features of the guided sandbox include file
creation, network response size, file extension, registry
creation, and HTTP method. The five most important
features of the unguided sandbox include file size, mu-
tex, file path, HTTP method, and type of registry keys.
Cross referencing those features with Table 3 gives us
more context about the classification. For the guided, we
find that the file, registry, and network categories provide
complementary activity coverage for the malware families.
For example, when a malware family (Formbook) lacks
one or more activity categories (file and registry), the other
categories (process and network) complement them and
help classify them.

For the unguided, the file, network, and process cat-
egories rank higher in importance for classification, even

though the process artifacts (mutex) have low coverage.
Furthermore, the lack of activity coverage for some mal-
ware families in the unguided sandbox could be contribut-
ing to the classifier accuracy of 70%. In other words, the
classifier correctly classifies malware families with 70%
accuracy based on the wrong features. The phenomenon
is known as the base rate fallacy [52] and underscores the
impact an unguided sandbox configuration can have on se-
curity applications such as malware family classification.
The absense of activity and its effect on the classifier’s
performance (and perceived findings) is even more evident
in Table 8 in Appendix B.

6. Discussion & Conclusion

To recap, the guided sandbox applied as much of
the proposed guidelines as possible for the use cases
we studied. Using this experiment setup, we quantified
the activity coverage for creating a blocklist, extracting
malware behavior, and labeling malware families.

The blocklist objective shows that even with a well-
configured sandbox, we can expect failed execution, anti-
analysis, and missing dependencies. Moreover, the age
of the malware can influence the blocklist results. For
example, we observed that older malware like Neutrino
had more activity coverage than newer malware like Form-
book, primarily because newer malware tend to utilize
more effective tactics that can evade sandbox analysis.

The malware behavior objective shows that mal-
ware execution is non-deterministic in nature. This non-
determinism can be partially attributed to the malware
configuration and customization by the operator. For ex-
ample, we observed several malware samples from the
same family (Agenttesla and Amadey) to have varied be-
havior. These variations are noticeable in the observed file
and registry artifacts. One report of Agenttesla mentions
that that particular sample is configured to search and
steal crytpocurrency wallets, while another sample did not
exhibit that behavior. Thus, the usage of multiple artifact
categories (file, registry, process, and network) can provide
a better understanding of how malware executes.

Finally, the malware family objective shows that clas-
sifiers can perform poorly when they lack observable
artifacts. Our empirical experiment shows that the guided
sandbox artifacts provide much higher fidelity classifica-
tion results in comparison with the unguided. We also
show that combining artifacts from two or more sandboxes
can potentially improve the classification results. We con-
jecture a better configured sandbox ensemble can provide
additional artifacts for classification because even with
the unguided sandbox we observed some improvement.
Finally, our experiments shed light on reasons why family
classifiers can achieve a higher than expected accuracy
based on latent signals or base rate fallacy [116]. For
example, classifiers can incorrectly incorporate features
based on the lack of artifacts observed for a given family.
Therefore, the classifier may achieve a higher than ex-
pected accuracy, since the classification algorithms learn
the family label based on the lack of observed artifacts.

Taken as a whole, our evaluations affirm that there is
no “silver bullet” for configuring and using sandboxes. To
ensure that end-users use sandboxes in ways that provide
the best chance of collecting meaningful artifacts, we

13



recommend that they define an appropriate scope for their
analyses, a corresponding threat model, and derive context
about how artifacts collected from the sandbox could
influence their intended use case. Overall, as in-depth
assessments show that care must be taken when using
sandboxes for security applications, keeping in mind that
even when applying advanced techniques, using multiple
analyses, and systematically testing their configurations,
the results can still be incomplete due to limitations of the
underlying technologies. For these reasons, it is imperative
that end-users document these limitations and identify
possible remedies based on the guidelines we suggested.

References
[1] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure: Finding

malicious domains using passive dns analysis.,” in Proc. of the 18th NDSS,
San Diego, CA, Feb. 2011.

[2] Y. Sun, K. Jee, S. Sivakorn, et al., “Detecting malware injection with
program-dns behavior,” in Proc. of the 5th EuroS&P, Sep. 2020.

[3] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and G. Vigna,
“Efficient detection of split personalities in malware.,” in Proc. of the 17th
NDSS, San Diego, CA, Feb. 2010.

[4] G. Jacob, R. Hund, C. Kruegel, and T. Holz, “Jackstraws: Picking com-
mand and control connections from bot traffic.,” in Proc. of the 20th
USENIX Security, San Francisco, CA, Aug. 2011.

[5] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding
linux malware,” in Proc. of the 39th S&P Oakland, San Francisco, CA,
May 2018.

[6] A. R. A. Grégio, P. L. De Geus, C. Kruegel, and G. Vigna, “Tracking
memory writes for malware classification and code reuse identification,”
in Proc. of the DIMVA, Jul. 2012.

[7] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering,” in Proc. of the 16th ACM CCS, Chicago, Illinois, Nov. 2009.

[8] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok: Deep
packer inspection: A longitudinal study of the complexity of run-time
packers,” in Proc. of the 36th S&P Oakland, San Jose, CA, May 2015.

[9] D. Kirat and G. Vigna, “Malgene: Automatic extraction of malware
analysis evasion signature,” in Proc. of the 22nd ACM CCS, Denver,
Colorado, Oct. 2015.

[10] F. Barr-Smith, X. Ugarte-Pedrero, M. Graziano, R. Spolaor, and I. Marti-
novic, “Survivalism: Systematic analysis of windows malware living-off-
the-land,” in Proc. of the 42nd S&P Oakland, Online Conference, May
2021.

[11] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM computing surveys
(CSUR), 2012.

[12] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware
analysis in the modern era—a state of the art survey,” ACM Computing
Surveys (CSUR), 2019.

[13] C. Rossow, C. J. Dietrich, C. Grier, et al., “Prudent practices for designing
malware experiments: Status quo and outlook,” in Proc. of the 33rd S&P
Oakland, San Francisco, CA, May 2012.

[14] A. Bulazel and B. Yener, “A survey on automated dynamic malware anal-
ysis evasion and counter-evasion: Pc, mobile, and web,” in Proceedings of
the 1st ACM Reversing and Offensive-oriented Trends Symposium, 2017.

[15] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro, “Sok:
Using dynamic binary instrumentation for security (and how you may get
caught red handed),” in Proc. of the 14th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), Auckland, New
Zealand, Apr. 2019.

[16] D. C. D’Elia, E. Coppa, F. Palmaro, and L. Cavallaro, “On the dissection
of evasive malware,” IEEE Transactions on Information Forensics and
Security, 2020.

[17] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic spyware
analysis,” in Proc. of the 2007 USENIX Annual Technical Conference
(ATC), Santa Clara, CA, Jun. 2007.

[18] QEMU, QEMU: the FAST! processor emulator, https://www.qemu.org,
2019.

[19] Xen Project, WHAT IS THE XEN PROJECT? https://xenproject.org/about-
us/, Online; accessed 25 January 2020.

[20] M. Jones, Virtio: An I/O virtualization framework for Linux, https://deve
loper.ibm.com/articles/l-virtio/, Jan. 2010.

[21] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok: Introspec-
tions on trust and the semantic gap,” in Proc. of the 35th S&P Oakland,
San Jose, CA, May 2014.

[22] M. N. Hossain, S. M. Milajerdi, J. Wang, et al., “SLEUTH: Real-time
attack scenario reconstruction from COTS audit data,” in Proc. of the
26th USENIX Security, Vancouver, BC, Canada, Aug. 2017.

[23] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis,
“Spotless sandboxes: Evading malware analysis systems using wear-and-
tear artifacts,” in Proc. of the 38th S&P Oakland, San Jose, CA, May
2017.

[24] C. Xuan, J. Copeland, and R. Beyah, “Toward revealing kernel malware
behavior in virtual execution environments,” in Proc. of the 12th RAID,
Saint-Malo, France, Sep. 2009.

[25] M. Yong Wong, M. Landen, M. Antonakakis, D. M. Blough, E. M.
Redmiles, and M. Ahamad, “An inside look into the practice of malware
analysis,” in Proc. of the 28th ACM CCS, Seoul, South Korea, Nov. 2021.

[26] D. Kim, A. Majlesi-Kupaei, J. Roy, et al., “Dynodet: Detecting dynamic
obfuscation in malware,” in Proc. of the DIMVA, Bonn, DE, Jul. 2017.

[27] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior-
based spyware detection.,” in Proc. of the 15th USENIX Security, Van-
couver, Canada, Jul. 2006.

[28] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster, “Build-
ing a dynamic reputation system for dns.,” in Proc. of the 19th USENIX
Security, Washington, DC, Aug. 2010.

[29] L. Litty, H. A. Lagar-Cavilla, and D. Lie, “Hypervisor support for identi-
fying covertly executing binaries.,” in Proc. of the 17th USENIX Security,
San Jose, CA, Aug. 2008.

[30] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and
classification of malware behavior,” in Proc. of the DIMVA, Jul. 2008.

[31] W.-J. Li, S. Stolfo, A. Stavrou, E. Androulaki, and A. D. Keromytis, “A
study of malcode-bearing documents,” in Proc. of the DIMVA, Lucerne,
CH, Jul. 2007.

[32] W. Cui, M. Peinado, Z. Xu, and E. Chan, “Tracking rootkit footprints
with a practical memory analysis system,” in Proc. of the 21st USENIX
Security, Bellevue, WA, Aug. 2012.

[33] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in Proc. of the 16th NDSS,
San Diego, CA, Feb. 2009.

[34] M. Z. Rafique and J. Caballero, “Firma: Malware clustering and network
signature generation with mixed network behaviors,” in Proc. of the 16th
RAID, St. Lucia, Sep. 2013.

[35] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: Finding bots
in network traffic without deep packet inspection,” in Proceedings of the
8th international conference on Emerging networking experiments and
technologies, 2012.

[36] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-
based malware and signature generation using malicious network traces.,”
in Proc. of the 7th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), San Jose, CA, Apr. 2010.

[37] T.-F. Yen and M. K. Reiter, “Traffic aggregation for malware detection,”
in Proc. of the DIMVA, Jul. 2008.

[38] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
in International Workshop on Recent Advances in Intrusion Detection,
Queensland, Australia, Sep. 2007.

[39] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries,” in
Proc. of the 31th S&P Oakland, Oakland, CA, May 2010.

[40] R. Paleari, L. Martignoni, E. Passerini, et al., “Automatic generation of
remediation procedures for malware infections.,” in Proc. of the 19th
USENIX Security, Washington, DC, Aug. 2010.

[41] X. Hu and K. G. Shin, “Duet: Integration of dynamic and static analyses
for malware clustering with cluster ensembles,” in Proc. of the 29th
ACSAC, 2013.

[42] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in Proc. of the 14th RAID, Menlo Park,
California, Sep. 2011.

[43] P. Vadrevu and R. Perdisci, “Maxs: Scaling malware execution with se-
quential multi-hypothesis testing,” in Proc. of the 11th ACM Symposium on
Information, Computer and Communications Security (ASIACCS), Xi’an,
China, Jun. 2016.

[44] U. Bayer, E. Kirda, and C. Kruegel, “Improving the efficiency of dynamic
malware analysis,” in Proc. of the 2010 ACM Symposium on Applied
Computing (SAC), Sierre, Switzerland, Mar. 2010.

[45] D. Kirat and G. Vigna, “Barecloud: Bare-metal analysis-based evasive
malware detection,” in Proc. of the 23rd USENIX Security, San Diego,
CA, Aug. 2014.

[46] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,”
in International Conference on Information Security, Springer, 2007.

[47] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in Proc. of the International Conference on Dependable
Systems and Networks (DSN), 2008.

[48] K. A. Roundy and B. P. Miller, “Hybrid analysis and control of malware,”
in Proc. of the 13th RAID, Ottawa, Canada, Sep. 2010.

[49] C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and A. Vasudevan,
“Down to the bare metal: Using processor features for binary analysis,”
in Proc. of the 28th ACSAC, 2012.

[50] Y. Kawakoya, M. Iwamura, E. Shioji, and T. Hariu, “Api chaser: Anti-
analysis resistant malware analyzer,” in Proc. of the 16th RAID, St. Lucia,
Sep. 2013.

14

https://www.qemu.org
https://xenproject.org/about-us/
https://xenproject.org/about-us/
https://developer.ibm.com/articles/l-virtio/
https://developer.ibm.com/articles/l-virtio/


[51] Z. Xu, J. Zhang, G. Gu, and Z. Lin, “Goldeneye: Efficiently and effectively
unveiling malware’s targeted environment,” in Proc. of the 17th RAID,
Gothenburg, Sweden, Sep. 2014.

[52] A. Küchler, A. Mantovani, Y. Han, L. Bilge, and D. Balzarotti, “Does
every second count? time-based evolution of malware behavior in sand-
boxes,” in Proc. of the 2021 NDSS, Virtual, Feb. 2021.

[53] P. Pawlak and C. Wendling, “Trends in cyberspace: Can governments keep
up?” Environment Systems and Decisions, 2013.

[54] T. Grant, “On the military geography of cyberspace,” Leading Issues in
Cyber Warfare and Security: Cyber Warfare Secur, 2015.

[55] P. Pawlak, “Capacity building in cyberspace as an instrument of foreign
policy,” Global Policy, 2016.

[56] S. Dambra, L. Bilge, and D. Balzarotti, “Sok: Cyber insurance–technical
challenges and a system security roadmap,” in Proc. of the 41st S&P
Oakland, May 2020.

[57] A. Neupane, M. L. Rahman, N. Saxena, and L. Hirshfield, “A multi-modal
neuro-physiological study of phishing detection and malware warnings,”
in Proc. of the 22nd ACM CCS, Denver, Colorado, Oct. 2015.

[58] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of
malicious behavior,” in Proc. of the 6th joint meeting of European Software
Engineering Conference (ESEC) and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), Dubrovnik, Croatia, Sep.
2007.

[59] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell, “A
layered architecture for detecting malicious behaviors,” in Proc. of the
11th RAID, Cambridge, Massachusetts, Sep. 2008.

[60] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan, “Syn-
thesizing near-optimal malware specifications from suspicious behaviors,”
in Proc. of the 31th S&P Oakland, Oakland, CA, May 2010.

[61] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based
malware detection using dynamic analysis,” Journal in computer Virology,
2011.

[62] C. Willems, F. C. Freiling, and T. Holz, “Using memory management to
detect and extract illegitimate code for malware analysis,” in Proc. of the
28th ACSAC, 2012.

[63] S. Palahan, D. Babić, S. Chaudhuri, and D. Kifer, “Extraction of statisti-
cally significant malware behaviors,” in Proc. of the 29th ACSAC, 2013.

[64] R. Canzanese, S. Mancoridis, and M. Kam, “Run-time classification
of malicious processes using system call analysis,” in Proceedings of
the 10th International Conference on Malicious and Unwanted Software
(MALWARE), 2015.

[65] A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
“UNV EIL: A large-scale, automated approach to detecting ran-
somware,” in Proc. of the 25th USENIX Security, Austin, TX, Aug. 2016.

[66] M. Xu and T. Kim, “Platpal: Detecting malicious documents with platform
diversity,” in Proc. of the 26th USENIX Security, Vancouver, BC, Canada,
Aug. 2017.

[67] J. Zhang, Z. Gu, J. Jang, et al., “Scarecrow: Deactivating evasive malware
via its own evasive logic,” in Proc. of the International Conference on
Dependable Systems and Networks (DSN), 2020.

[68] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “Polyunpack:
Automating the hidden-code extraction of unpack-executing malware,” in
Proc. of the 22nd ACSAC, 2006.

[69] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted
approach to understanding the botnet phenomenon,” in Proc. of the 6th
ACM SIGCOMM Conference on Internet Measurement (IMC), 2006.

[70] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code extractor
for packed executables,” in Proceedings of the 2007 ACM workshop on
Recurring malcode, 2007.

[71] M. Polychronakis, P. Mavrommatis, and N. Provos, “Ghost turns zombie:
Exploring the life cycle of web-based malware,” 2008.

[72] T. Holz, M. Steiner, F. Dahl, E. Biersack, F. C. Freiling, et al., “Measure-
ments and mitigation of peer-to-peer-based botnets: A case study on storm
worm.,” in Proceedings of the 2008 USENIX Conference on Large-Scale
Exploits& Emergent Threats (USENIX LEET), 2008.

[73] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineering
of malware emulators,” in Proc. of the 30th S&P Oakland, Oakland, CA,
May 2009.

[74] B. Stone-Gross, C. Kruegel, K. Almeroth, A. Moser, and E. Kirda, “Fire:
Finding rogue networks,” in Proc. of the 25th ACSAC, 2009.

[75] D. A. Quist and L. M. Liebrock, “Visualizing compiled executables for
malware analysis,” in Proceedings of the 6th IEEE International Workshop
on Visualization for Cyber Security, 2009.

[76] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A view
on current malware behaviors.,” in Proceedings of the 2008 USENIX
Conference on Large-Scale Exploits& Emergent Threats (USENIX LEET),
2009.

[77] T. Holz, M. Engelberth, and F. Freiling, “Learning more about the
underground economy: A case-study of keyloggers and dropzones,” in
Proc. of the 14th ESORICS, Saint Malo, France, Sep. 2009.

[78] S. Krishnan, K. Z. Snow, and F. Monrose, “Trail of bytes: Efficient support
for forensic analysis,” in Proc. of the 17th ACM CCS, Chicago, Illinois,
Oct. 2010.

[79] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel, and
S. Zanero, “Identifying dormant functionality in malware programs,” in
Proc. of the 31th S&P Oakland, Oakland, CA, May 2010.

[80] C. Leita, U. Bayer, and E. Kirda, “Exploiting diverse observation per-
spectives to get insights on the malware landscape,” in Proc. of the
International Conference on Dependable Systems and Networks (DSN),
2010.

[81] Y. Nadji, M. Antonakakis, R. Perdisci, and W. Lee, “Understanding the
prevalence and use of alternative plans in malware with network games,”
in Proc. of the 27th ACSAC, 2011.

[82] M. Neugschwandtner, P. M. Comparetti, and C. Platzer, “Detecting mal-
ware’s failover c&c strategies with squeeze,” in Proc. of the 27th ACSAC,
2011.

[83] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring pay-per-
install: The commoditization of malware distribution.,” in Proc. of the
20th USENIX Security, San Francisco, CA, Aug. 2011.

[84] C. Rossow, C. Dietrich, and H. Bos, “Large-scale analysis of malware
downloaders,” in Proc. of the DIMVA, Jul. 2012.

[85] M. Lindorfer, A. Di Federico, F. Maggi, P. M. Comparetti, and S. Zanero,
“Lines of malicious code: Insights into the malicious software industry,”
in Proc. of the 28th ACSAC, 2012.

[86] N. Jagpal, E. Dingle, J.-P. Gravel, et al., “Trends and lessons from three
years fighting malicious extensions,” in Proc. of the 24th USENIX Security,
Washington, DC, Aug. 2015.

[87] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting
the gordian knot: A look under the hood of ransomware attacks,” in Proc.
of the DIMVA, Milan, IT, Jul. 2015.

[88] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Proc. of the
36th S&P Oakland, San Jose, CA, May 2015.

[89] K. Thomas, E. Bursztein, C. Grier, et al., “Ad injection at scale: Assessing
deceptive advertisement modifications,” in Proc. of the 36th S&P Oakland,
San Jose, CA, May 2015.

[90] X. Han, N. Kheir, and D. Balzarotti, “The role of cloud services in
malicious software: Trends and insights,” in Proc. of the DIMVA, Milan,
IT, Jul. 2015.

[91] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Rambo:
Run-time packer analysis with multiple branch observation,” in Proc. of
the DIMVA, Donostia-San Sebastián, ES, Jul. 2016.

[92] K. Thomas, J. A. E. Crespo, R. Rasti, et al., “Investigating commercial
pay-per-install and the distribution of unwanted software,” in Proc. of the
25th USENIX Security, Austin, TX, Aug. 2016.

[93] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis, “A
lustrum of malware network communication: Evolution and insights,” in
Proc. of the 38th S&P Oakland, San Jose, CA, May 2017.

[94] B. Farinholt, M. Rezaeirad, P. Pearce, et al., “To catch a ratter: Monitoring
the behavior of amateur darkcomet rat operators in the wild,” in Proc. of
the 38th S&P Oakland, San Jose, CA, May 2017.

[95] I. Haq, S. Chica, J. Caballero, and S. Jha, “Malware lineage in the wild,”
Computers & Security, 2018.

[96] E. Avllazagaj, Z. Zhu, L. Bilge, D. Balzarotti, and T. Dumitras, “When
malware changed its mind: An empirical study of variable program
behaviors in the real world,” in Proc. of the 30th USENIX Security, Aug.
2021.

[97] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in Proc. of the 15th ACM CCS,
Alexandria, VA, Oct. 2008.

[98] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, “The cuckoo
sandbox,” Accessed: Dec, 2012.

[99] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A tool for analyzing mal-
ware,” in European Institute for Computer Antivirus Research (EICAR),
2006.

[100] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware
analysis using cwsandbox,” in Proc. of the 28th S&P Oakland, Oakland,
CA, May 2007.

[101] A. Yokoyama, K. Ishii, R. Tanabe, et al., “Sandprint: Fingerprinting
malware sandboxes to provide intelligence for sandbox evasion,” in Proc.
of the 19th RAID, Evry, France, Sep. 2016.

[102] C. Rossow, C. J. Dietrich, H. Bos, et al., “Sandnet: Network traffic
analysis of malicious software,” in ACM Proceedings of the 1st Workshop
BADGERS, 2011.

[103] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan, “The menlo report,”
IEEE Security & Privacy, 2012.

[104] L. Gelinas, A. Wertheimer, and F. G. Miller, “When and why is research
without consent permissible?” Hastings Center Report, 2016.

[105] M. ATT&CK, “Mitre ATT&CK,” https://attack.mitre.org, 2021.
[106] Malware Bazaar - Statistics, https://bazaar.abuse.ch/statistics/, 2021.
[107] CyberCrime Tracker Stats, http://cybercrime-tracker.net/stats.php, 2021.
[108] Malware Trends Tracker, https://any.run/malware-trends/, 2021.
[109] Malware bazaar - yara. [Online]. Available: %5Curl%7Bhttps://bazaar.

abuse.ch/sample/efe947e0a8842997d152af946ef0293a972cc11662f3c62a
8461bc4a07427669/#yara%7D.

[110] V. DÍAZ, Context is king (part i) - crowdsourced sigma rules, May 2021.
[Online]. Available: %5Curl%7Bhttps : / / blog .virustotal . com/2021 /05 /
context-is-king-part-i-crowdsourced.html%7D.

[111] Snort- rules. [Online]. Available: %5Curl % 7Bhttps : / / www . snort . org /
downloads#rules%7D.

[112] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool
for massive malware labeling,” in Proc. of the 19th RAID, Evry, France,
Sep. 2016.

15

https://attack.mitre.org
https://bazaar.abuse.ch/statistics/
http://cybercrime-tracker.net/stats.php
https://any.run/malware-trends/
%5Curl%7Bhttps://bazaar.abuse.ch/sample/efe947e0a8842997d152af946ef0293a972cc11662f3c62a8461bc4a07427669/#yara%7D
%5Curl%7Bhttps://bazaar.abuse.ch/sample/efe947e0a8842997d152af946ef0293a972cc11662f3c62a8461bc4a07427669/#yara%7D
%5Curl%7Bhttps://bazaar.abuse.ch/sample/efe947e0a8842997d152af946ef0293a972cc11662f3c62a8461bc4a07427669/#yara%7D
%5Curl%7Bhttps://blog.virustotal.com/2021/05/context-is-king-part-i-crowdsourced.html%7D
%5Curl%7Bhttps://blog.virustotal.com/2021/05/context-is-king-part-i-crowdsourced.html%7D
%5Curl%7Bhttps://www.snort.org/downloads#rules%7D
%5Curl%7Bhttps://www.snort.org/downloads#rules%7D


[113] O. Alrawi, C. Lever, K. Valakuzhy, K. Snow, F. Monrose, M. Antonakakis,
et al., “The circle of life: A Large−Scale study of the IoT malware
lifecycle,” in Proc. of the 30th USENIX Security, Aug. 2021.

[114] A. Mohaisen, O. Alrawi, and M. Mohaisen, “Amal: High-fidelity,
behavior-based automated malware analysis and classification,” Comput-
ers & Security, 2015.

[115] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in python,” the Journal of machine Learning research, vol. 12,
2011.

[116] D. Arp, E. Quiring, F. Pendlebury, et al., “Dos and don’ts of machine
learning in computer security,” in Proc. of the 31th USENIX Security,
Aug. 2022.

[117] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen, “Revirt:
Enabling intrusion analysis through virtual-machine logging and replay,”
in Proc. of the ACM SIGOPS Operating System Review, vol. 36, Mar.
2002.

[118] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford, “Virtual playgrounds
for worm behavior investigation,” in Proc. of the 8th RAID, Seattle,
Washington, Sep. 2005.

[119] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Proc. of the 28th S&P Oakland, Oakland, CA,
May 2007.

[120] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-
based ”out-of-the-box” semantic view reconstruction,” in Proc. of the 14th
ACM CCS, Alexandria, VA, Nov. 2007.

[121] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: Cap-
turing system-wide information flow for malware detection and analysis,”
in Proc. of the 14th ACM CCS, Alexandria, VA, Nov. 2007.

[122] J. Van Randwyk, K. Chiang, L. Lloyd, and K. Vanderveen, “Farm: An
automated malware analysis environment,” in IEEE Proceedings of 42nd
Annual International Carnahan Conference on Security Technology, 2008.

[123] A. Lanzi, M. I. Sharif, and W. Lee, “K-tracer: A system for extracting
kernel malware behavior.,” in Proc. of the 16th NDSS, San Diego, CA,
Feb. 2009.

[124] A. M. Nguyen, N. Schear, H. Jung, A. Godiyal, S. T. King, and H. D.
Nguyen, “Mavmm: Lightweight and purpose built vmm for malware
analysis,” in Proc. of the 25th ACSAC, 2009.

[125] J. P. John, A. Moshchuk, S. D. Gribble, A. Krishnamurthy, et al.,
“Studying spamming botnets using botlab.,” in Proc. of the 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
Boston, MA, Apr. 2009.

[126] R. Riley, X. Jiang, and D. Xu, “Multi-aspect profiling of kernel rootkit
behavior,” in Proceedings of the 4th ACM European conference on Com-
puter systems, 2009.

[127] B. M. Bowen, P. Prabhu, V. P. Kemerlis, S. Sidiroglou, A. D. Keromytis,
and S. J. Stolfo, “Botswindler: Tamper resistant injection of believable
decoys in vm-based hosts for crimeware detection,” in Proc. of the 13th
RAID, Ottawa, Canada, Sep. 2010.

[128] M. Neugschwandtner, C. Platzer, P. Milani Comparetti, and U. Bayer,
“Danubis - dynamic device driver analysis based on virtual machine
introspection,” in Proc. of the DIMVA, Jul. 2010.

[129] H. Yin and D. Song, “TEMU: Binary code analysis via whole-system lay-
ered annotative execution,” Electrical Engineering and Computer Sciences
University of California at Berkeley, Tech. Rep., 2010.

[130] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of procrastination:
Detection and mitigation of execution-stalling malicious code,” in Proc.
of the 18th ACM CCS, Chicago, Illinois, Oct. 2011.

[131] D. Kirat, G. Vigna, and C. Kruegel, “Barebox: Efficient malware analysis
on bare-metal,” in Proc. of the 27th ACSAC, 2011.

[132] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson, “Gq: Practical
containment for measuring modern malware systems,” in Proc. of the 11th
ACM SIGCOMM Conference on Internet Measurement (IMC), 2011.

[133] P. Royal, “Entrapment: Tricking malware with transparent, scalable mal-
ware analysis,” in Black Hat USA Briefings (Black Hat USA), Las Vegas,
NV, Aug. 2012.

[134] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, “V2e: Combining hard-
ware virtualization and software emulation for transparent and extensible
malware analysis,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments, 2012.

[135] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary program instru-
mentation and debugging via hardware virtualization,” in Proc. of the 29th
ACSAC, 2013.

[136] A. Henderson, A. Prakash, L. K. Yan, et al., “Make it work, make it right,
make it fast: Building a platform-neutral whole-system dynamic binary
analysis platform,” in Proc. of the International Symposium on Software
Testing and Analysis (ISSTA), San Jose, CA, Jul. 2014.

[137] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A.
Kiayias, “Scalability, fidelity and stealth in the drakvuf dynamic malware
analysis system,” in Proc. of the 30th ACSAC, 2014.

[138] C. Spensky, H. Hu, and K. Leach, “LO-PHI: Low-observable physical
host instrumentation for malware analysis.,” in Proc. of the 2016 NDSS,
San Diego, CA, Feb. 2016.

[139] D. Korczynski and H. Yin, “Capturing malware propagations with code
injections and code-reuse attacks,” in Proc. of the 24th ACM CCS, Dallas,
TX, Oct. 2017.

[140] G. Severi, T. Leek, and B. Dolan-Gavitt, “Malrec: Compact full-trace
malware recording for retrospective deep analysis,” in Proc. of the DIMVA,
Paris, FR, Jul. 2018.

[141] M. N. Arefi, G. Alexander, H. Rokham, et al., “Faros: Illuminating in-
memory injection attacks via provenance-based whole-system dynamic
information flow tracking,” in Proc. of the International Conference on
Dependable Systems and Networks (DSN), 2018.

[142] A. Davanian, Z. Qi, and Y. Qu, “Decaf++: Elastic whole-system dynamic
taint analysis,” in Proc. of the 22nd RAID, Beijing, China, Sep. 2018.

[143] R. Shipp, Online Scanners and Sandboxes, https : / /github .com/rshipp /
awesome - malware - analysis # online - scanners - and - sandboxes, Online;
accessed 25 January 2020.

Malware sandbox systems describe the design and im-
plementation of malware sandbox technology. We project
the sandbox survey using Figure 1 to highlight the imple-
mentation, monitoring technique, and availability. More
complete surveys on dynamic analysis (including sand-
boxes) can be found in prior works [11], [12], [14].

1. Malware Sandbox Considerations

Sandbox researchers must consider trade-offs be-
tween transparency, scalability, extensibility, and isolation.
Transparency indicates if the analysis environment (hard-
ware, OS, and environment) is indistinguishable from the
malware’s target environment. Scalability describes how
efficiently a malware sandbox utilizes resources so that it
can scale to concurrent analysis instances. Extensibility
describes the required effort to extend a malware sandbox
monitoring capability. Isolation describes the malware
sandbox system and network isolation of an analysis en-
vironment. Each consideration plays a role in the malware
analysis process, but they cannot all be satisfied.

For example, from Figure 1 a bare-metal sandbox has
high hardware transparency, no isolation, expensive to
scale, and is difficult to extend. On the other hand, an
emulated sandbox has low hardware transparency, good
isolation, moderate to scale with some overhead, and is
easiest to extend. A virtualized sandbox provides mod-
erate hardware transparency, isolation, highly scalable,
and extensible. These properties provide context around
malware sandbox systems that highlight their historical
development. However, an important point to keep in mind
is that the properties do not necessarily hold in practice
due to other factors (monitoring and environment). For
example, bare-metal systems provide high hardware trans-
parency but Yokoyama et al. [101] shows that they can be
identified with simple profiling.

2. A Survey of Malware Sandboxes

Table 5 presents a chronologically ordered list of mal-
ware sandbox systems found in the academic literature.
We divide Table 5 into four sections, namely system
information (reference and system name), implementation,
monitoring, and available access (Avail.). There are many
open-source and commercial malware sandboxes that are
not in the academic literature. We do not include these
malware sandboxes because their design is not docu-
mented. Interested readers can refer to a community-
curated list of malware sandboxes [143].

16

https://github.com/rshipp/awesome-malware-analysis#online-scanners-and-sandboxes
https://github.com/rshipp/awesome-malware-analysis#online-scanners-and-sandboxes


TABLE 5: A summary of sandbox system papers. The
available accesses (Avail.) are open-source (✓), commer-
cial (✓$), or broken resource (✓*).

Paper System
Name

Implementation Monitoring Avail.Emu. Virt. Metal IGU IGK OGOn OGOff
Dunla02 [117] ReVirt ✓ ✓ ✓ ✓
Jiang05 [118] vGrounds ✓ ✓ ✓
Bayer06 [99] TTAanlyze ✓ ✓ ✓ ✓$

Moser07 [119] ✓ ✓ ✓ ✓ ✓$
Wille07 [100] CWSandbox ✓ ✓ ✓$
Jiang07 [120] VMwatcher ✓ ✓ ✓

Yin07 [121] Panorama ✓ ✓ ✓
Dinab08 [97] Ether ✓ ✓ ✓

Randw08 [122] ISLAND ✓ ✓ ✓*
Lanzi09 [123] K-Tracer ✓ ✓ ✓ ✓

Xuan09 [24] Rkprofiler ✓ ✓
Nguye09 [124] MAVMM ✓ ✓ ✓

John09 [125] Botlab ✓ ✓ ✓ ✓*
Riley09 [126] PoKeR ✓ ✓ ✓

Bowen10 [127] BotSwindler ✓ ✓
Neugs10 [128] dAnubis ✓ ✓ ✓$

Yin10 [129] TEMU ✓ ✓ ✓ ✓
Kolbi11 [130] HASTEN ✓ ✓ ✓ ✓$
Kirat11 [131] BareBox ✓ ✓ ✓$

Rosso11 [102] Sandnet ✓ ✓ ✓
Kreib11 [132] GQ ✓ ✓ ✓ ✓
Royal12 [133] NVMTrace ✓ ✓ ✓ ✓

Yan12 [134] V2E ✓ ✓ ✓ ✓
Deng13 [135] SPIDER ✓ ✓

Hende14 [136] DECAF ✓ ✓ ✓ ✓
Lengy14 [137] DRAKVUF ✓ ✓ ✓
Mohai15 [114] AutoMal ✓ ✓ ✓
Spens16 [138] LO-PHI ✓ ✓ ✓ ✓ ✓ ✓
Korcz17 [139] Tartarus ✓ ✓
Sever18 [140] Malrec ✓ ✓ ✓ ✓*
Arefi18 [141] FAROS ✓ ✓ ✓ ✓

Davan19 [142] DECAF++ ✓ ✓ ✓ ✓

Implementation. The first requirement for malware sand-
box systems is to study malware in an isolated environ-
ment. Jiang et al. [118] use virtual machines to create
a playground where worms can be observed and stud-
ied. Bayer et al. [99] use whole-system emulation to
study malware threats. For bare-metal sandboxes, isolation
can be implemented only on the network side. John et
al. [125] propose a network isolation approach to ensure
that malware does not infect systems outside the analysis
environment. Many other systems [24], [97], [100], [120],
[121], [123], [124] rely on either whole-system emulation,
virtualization, or bare-metal. Each of these technologies
has limitations in terms of scalability.

Sandboxes have an inevitable time cost because the
malware must run for a preset time. Also, any setup
time incurred based on the implementation of the sandbox
adds to the overall analysis time. For instance, bare-metal-
based systems [122], [125], [131]–[133], [138] incur more
time in setup than emulation or virtualization. Royal et
al. [133] optimize the setup process for bare-metal-based
systems by leveraging ATA-over-Ethernet with copy-on-
write block device mounts. Furthermore, the monitor-
ing tools can incur additional slow-down depending on
the monitoring capability (fine-grained or coarse-grained).
Scaling malware sandboxes is difficult and malware sand-
box designers must be mindful of bottlenecks that affect
compute resources such as slow disk, low network band-
width, and saturated memory.

Monitoring. Earlier malware sandboxes [99], [100],
[118] rely on inside-guest user-space monitoring to cap-
ture malware behavior. Even popular open-source sand-
boxes, such as Cuckoo [98], rely on inside-guest user-
space monitoring. The inside-guest user-space monitoring
technique provides instruction-level traces but also various
levels of abstraction such as system call hooking versus
instruction tracing. Techniques like inside-guest kernel-
space and outside-guest online can provide the same
level of detail but for a system-wide scope [24], [97],
[123], [126], [128], [129], [135], [137], [138], [140].
Fine-grained context gives malware analysts the ability to

understand the functional capability of a malware behavior
(what information malware stores in a file versus what
files malware creates). Jiang et al. [118] use network
artifacts with fine-grained monitoring in the user-space.

Alternatively, Yin et al. [121] propose Panorama,
which provides system-wide taint tracking capabilities
for observing behavior. The primary goal of Panorama
is to provide a holistic view of a malware’s interac-
tion with the system for offline inspection. Other ap-
proaches [124], [134], [136], [139], [141], [142] provide
a way to track malware interaction through data taint-
tracking techniques. Tartarus [139] and FAROS [141] use
whole-system emulation to track memory-based attacks,
such as cross-process code injection. Although these tech-
niques are promising, they have a large overhead and are
difficult to apply for bare-metal sandboxes. Tartarus relies
on offline analysis to mitigate the overhead, while FAROS
relies on an online approach through record-and-replay
with an overhead of 56x.

Considerations. Most of the cited work in Table 5 prior-
itize the transparency of a sandbox deployment. Malware
sandbox researchers address transparency through the im-
plementation and monitoring components of a sandbox,
but also the analysis environment during a deployment.
There are ample techniques [14] to detect virtualized and
emulated implementations of malware sandboxes. Rand-
wyk et al. [122] propose a bare-metal-based sandbox
to overcome the hardware transparency problem. Sev-
eral other works [125], [131]–[133], [138] utilize bare-
metal sandboxes, but system transparency also affects the
environment, which includes OS configuration, installed
applications, and network access.

For near-perfect hardware transparency, Nguyen et
al. [124] propose using the Secure Virtual Machine (SVM)
feature on AMD processors to implement more trans-
parent sandboxes. Jiang et al. [120] show that malware
can detect inside-guest monitoring tools and change their
behavior. To address monitoring transparency, Jiang et
al. propose VMWatcher, an outside virtual machine intro-
spection (VMI) technique, to observe malware behavior.
However, there is a semantic gap for different sandbox
implementations [21].

Summary. From a theoretical point of view, sandbox
systems balance transparency, isolation, extensibility, and
scalability. In practice, they rely on different implemen-
tation and monitoring technologies that can create a wide
variation in the analysis results due to unforeseen fac-
tors. These different configurations have a wide range
of applications, which we outline in the systematization.
However, the usage has primarily been on understanding
the behavior of the binary code of malware. negatively
impact sandbox applications.

TABLE 6: A list of installed software in Windows 10
analysis environments.

Productivity Browsers Browser Plugins Remote Admin Mail Clients Instant Messaging

MS Office 16 Internet Explorer Flash 28 3D-FTP OperaMail ICQ
MS Office 2016 Chrome Java 8 CoreFTP Skype Trillian
Adobe Reader Firefox WinSCP Thunderbird Yahoo Messanger

FileZilla FoxMail WhatsApp
NCFTP Outlook Pidgin
FlashFXP
BitKinex
LeechFTP

17



TABLE 7: An example of signatures used to identify the
execution of malware in a sandbox environment.

Artifact Category Signature Example

File roaming.bld93115rwr.[a-zA-Z0-9]*\.exe
appdata.roaming.[a-z0-9]+.[a-z0-9]+\.exe

Registry software.microsoft.windows.currentversion.run.[a-z]*\.exe
downloadmanager.passwords

Process (Mutex) BN[a-f0-9]+
[a-zA-Z]{9}

18



TABLE 8: Classification accuracy (A), precision (P), recall (R), and F1 score for malware families based on both guided
(G) and unguided (U) sandbox artifacts.

All File Registry Process NetworkSandbox
Type Algorithm A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

Random Forest 96.52 96.77 95.3 96.57 78.26 83.77 66.37 77.9 63.91 79.54 50.08 60.71 40.43 30.55 18.92 25.68 68.26 72.74 56.91 66.96
Decision Trees 92.17 92.38 89.4 92.18 77.83 81.38 65.96 77.8 63.91 79.54 50.08 60.71 40.43 30.55 18.92 25.68 66.96 71.57 54.58 65.61
KNN 90.43 90.66 88 90.41 73.48 80.14 58.49 72 63.04 77.34 48.77 59.69 41.74 27.01 21.15 28.74 63.48 62.02 43.76 58.67
SVM Linear L2 85.65 87.72 82.1 85.92 64.78 57.95 43.67 59.3 45.65 31.43 25.9 32.85 33.91 12.15 13.81 17.79 44.35 50.07 22.95 37.35
SVM Dual 85.65 87.72 82.1 85.92 64.78 57.95 43.67 59.3 45.65 31.43 25.9 32.85 33.91 12.15 13.81 17.79 44.35 50.07 22.95 37.35
Log. Reg. Dual 84.78 87.61 79.8 85.13 67.83 65.13 50.13 64.4 46.52 36.8 27.8 34.01 37.83 14.64 13.81 21.11 43.48 54.27 22.19 36.54
Log. Reg. L1 84.78 87.53 79.8 85.06 69.13 64.13 51.11 65.2 46.52 32.92 26.6 34.17 37.83 14.64 13.81 21.11 43.48 48.25 22.11 37.05
Log. Reg L2 84.35 87.15 78.9 84.68 67.83 65.28 50.21 64.3 45.65 38.58 27.11 32.55 37.83 14.64 13.81 21.11 43.04 54.22 21.23 36.09
Preceptron 83.91 84.96 78.4 83.81 50.43 60.22 28.61 46.2 23.91 11.47 20.95 13.46 10.87 4.52 2.1 4.25 37.83 52.07 30.2 36.85
Preceptron L1 79.13 81.01 74.4 79.23 59.57 65.73 44.22 55.3 47.39 54.71 33.92 39.14 11.74 3.15 -4.88 4.96 41.74 61.19 36.06 40.75
Preceptron Dual 72.61 71.9 66.2 69.68 47.83 72.68 30.7 49.2 43.48 24.51 24.16 28.72 10.87 4.52 2.1 4.25 23.48 43.55 15.04 20.11
Preceptron L2 60.87 72.15 47 59.34 41.74 53.27 21.82 39 31.74 21.18 22.43 21.84 2.17 2.88 -11.13 1.75 26.52 32.79 22.24 22.99

Guided

SVM Poly. 54.78 66.31 35.6 50.02 46.09 53.22 19.56 38.6 34.35 33.84 13.87 23.22 36.96 14.75 13.33 20.94 30.87 37.21 6.67 19.32

Random Forest 70.31 69.21 62.8 68.43 53.28 71.17 34.56 49.5 66.38 68.53 61.6 64.35 47.16 38.23 25.35 39.67 46.72 49.75 24.1 41.75
Decision Trees 67.69 67.03 62 67.01 52.84 68.54 34.22 49.2 66.81 69.5 62.02 65.03 47.16 38.23 25.35 39.67 46.72 50.52 24.32 41.71
KNN 65.07 65.47 60.2 64.74 44.1 67.99 32.35 45.9 62.88 60.46 50.51 59.97 41.05 32.94 29.7 33.11 41.92 40.42 20.81 36.91
SVM Linear L2 64.19 63.55 47.1 59.48 48.47 51.9 27.47 41.9 58.52 57.16 37.6 52.83 25.33 7.77 0.04 11.8 39.74 55.27 15.64 32.34
SVM Dual 64.19 63.55 47.1 59.48 48.47 51.9 27.47 41.9 58.52 57.16 37.6 52.83 25.33 7.77 0.04 11.8 39.74 55.27 15.64 32.34
Log. Reg. Dual 62.88 62.63 45 58.01 48.47 53.71 27.47 41.9 58.95 57.65 39.22 53.68 25.33 7.77 0.04 11.8 38.43 51.3 14.34 30.61
Log. Reg. L1 62.88 62.58 45 58.04 48.03 53.95 26.57 41.2 59.39 57.74 39.39 53.79 25.33 7.77 0.04 11.8 38.86 41.02 15.53 30.73
Log. Reg L2 63.32 62.8 45.3 58.39 48.47 54.32 27.47 41.9 58.08 56.55 37.43 52.38 25.33 7.77 0.04 11.8 38.86 52.08 14.58 30.92
Preceptron 57.21 76.86 61 55.92 43.23 48.87 23.29 37.6 43.23 63.86 33.93 38.71 17.03 3.05 13.23 5.17 27.51 34.42 17.3 26.04
Preceptron L1 63.32 58.74 45.6 57.81 43.67 54.26 23.71 38.2 40.61 62.4 31.73 36.91 25.76 6.64 0 10.56 19.21 41.83 13.59 19.93
Preceptron Dual 58.08 54.64 41.2 53.12 37.99 36.01 15.33 30.8 30.57 27.32 21.53 24.03 6.55 2.98 -7.77 4.04 21.83 31.26 9.53 20.56
Preceptron L2 52.84 64.23 42.1 51.28 41.48 44.47 17.28 33.5 35.37 55.53 24.62 32.78 3.93 0.87 -6.98 1.42 23.58 24.04 10.56 17.57

Unguided

SVM Poly. 46.72 63.44 26.5 42.43 41.92 55.31 21.7 36.6 48.03 56.7 28.15 42.09 33.62 19.31 7.98 22.36 32.75 25.04 5.57 21.23

19


	Introduction
	Framework and Methodology
	Systematization Methodology

	Categories of Sandbox Usage
	Detection
	Observational
	Anti-analysis

	Sandbox Applications and Usage
	Sandbox Implementation
	Monitoring Techniques
	Analysis Parameters
	From Practices To Guidelines

	Evaluation: Sandbox Guidelines
	Overview
	Guided Sandbox Setup
	Malware Dataset
	Methodology
	Results

	Discussion & Conclusion
	
	Malware Sandbox Considerations
	A Survey of Malware Sandboxes


