XPLICIT: STATIC INFORMATION FLOW ANALYSIS FOR ARM32 FIRMWARE

A Dissertation
Presented to
The Academic Faculty

Konstantinos Karakatsanis

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Electrical and Computer Engineering
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2024

© Konstantinos Karakatsanis 2024

XPLICIT: STATIC INFORMATION FLOW ANALYSIS FOR ARM32 FIRMWARE

Thesis committee:

Dr. Angelos D. Keromytis

School of Electrical and Computer Engineer-
ing

Georgia Institute of Technology

Dr. Newman Fabian Monrose

School of Electrical and Computer Engineer-
ing

Georgia Institute of Technology

Dr. Mustaque Ahamad
School of Cybersecurity and Privacy
Georgia Institute of Technology

Date approved: July 19, 2024

TABLE OF CONTENTS

Listof Tables i i i it it et it ettt i e e vii
Listof Figures i i i it i it ittt ittt et onoeneneas viii
Listof Acronyms v i v i i i i i it i i ettt e ix
SUMMATY . & v vt v it e e e e vt o ot o oo ot o oo o oo o oo oeesoeos X
Chapter 1: Introduction i 0 i i i i i ittt ittt o e oo nas 1
1.1 Thesis Proposition 2
1.2 Contributions e e e 2
1.3 ThesisOverview ittt e 3
Chapter2: Background i i i i ittt ittt eteens 4
2.1 Types of Firmware for IoT Devices 4
2.2 Static Analysisof Firmware L oo 4
2.3 ImplicitDataFlows 4
2.4 Hardware Control Registers 5
2.5 Vulnerabilities of Interest 5
Chapter 3: Related Work 0 i ittt 7
3.1 Firmware Collection, 7

1l

3.2 Firmware Analysis L 7
3.2.1 StaticAnalysis 8

3.2.2 Dynamic Analysis L 9

3.2.3 Symbolic Execution.o L. 10

3.3 Evaluation & Comparison of Existing Tools 10
Chapter 4: Methodology i i it ittt teteenenns 13
4.1 OVErVIEW . . . o ot e e e e e e e 13
4.2 Infrastructure L. 14
42.1 Hardware 14
422 Software Tools 14

4.3 Prototype Development oL 15
44 AnalysisatScale 16
4.5 Control Flow Analysis 17
4.5.1 Control Flow Graph Visualization 18

4.6 DataFlow Analysis 19
4.6.1 Data Flow Graph Visualization 21

4.7 Enhanced Data Flow Analysis 23
4.7.1 Inter-procedural Analysis 24
472 Constant Propagation 24

4.7.3 Control Register & Peripheral Discovery 25
4.7.4 Identification of Control Registers & Peripherals without SVD . . . 26

4.8 Implicit Data Flow Analysis 26

v

Chapter5: Results0 i i i ittt it ittt i et e 28

5.1 Prototype DevelopmentResults 28
5.1.1 Separation of Boot & Steady State 28
5.1.2 Control Register & Peripheral Discovery Results 28

5.1.3 Identification of Control Registers & Peripherals without SVD Results 29

5.1.4 Defining Performance of Identifying Control Registers & Peripherals 30

5.1.5 Implicit Data Flow Analysis Results 30

5.2 Identifying Risky Flow in Firmware 31
5.2.1 Threat Model 31

522 RiskyFlow 32

5.3 AnalysisatScaleResults Lo 35
Chapter 6: Discussion o i i i i it i it i ittt it e 38
6.1 Limitations e e e 38
6.1.1 Control Flow Graph Limitations 38

6.1.2 Data Flow Graph Limitations 39

6.1.3 Implicit Data Flow Analysis Limitations 40

6.1.4 Static Information Flow Analysis Limitations 40

6.2 Future Work 40
6.2.1 Decluttering Data Flow Graphs 40

6.2.2 Enhanced Implicit Data Flow Analysis 41

6.2.3 Usability Testingand User Study 41
Chapter 7: Conclusion i ittt ittt teeeeenneeos 42

Appendices

Appendix A: Control Registers & Peripherals Identification

References

vi

3.1

3.2

4.1

5.1

5.2

53

A.l

LIST OF TABLES

Overview of Existing Firmware Vulnerability Detection Systems 12
Overview of Static Analysis Systems 12
Memory Mapping for Cortex-M3 and Cortex-M4 ARM Processors 21
Improvement in the Discovery of Control Registers & Peripherals 29
Before and after the Discovery of Implicit Data Flows 31
Xplicit Analysis at Scale Results 37
Control Registers & Peripherals Identified 44

Vil

4.1

4.2

4.3

4.4

5.1

5.2

LIST OF FIGURES

Part of the Control Flow Graph created with Xplicit for v3.27 of the DuT . . 18

Example of a Data Flow Graph created with Xplicit for firmware version

v3.27of the DuT) 22
Constant Propagation with Xplicit for v3.27 of the DuT 25
Implicit Data Flow Analysis created with Xplicit for v3.27 of the DuT . . . 27

Control Flow Graph from IDA Pro for function sub_8005938 of DuT’s v3.27 29

View from IDA Pro for function sub_800D5BC of DuT’sv298 33

viil

LIST OF ACRONYMS

CFG Control Flow Graph

CVE Common Vulnerabilities and Exposures
DFG Data Flow Graph

DuT Device under Test

ICS Industrial Control System

IoT Internet of Things

PDU Protocol Data Unit

SVD System View Descriptor

VTOR Vector Table Offset Register

1X

SUMMARY

In this work, we designed and implemented Xplicit; a static approach that aims to
help identify potential vulnerabilities in firmware. The approach performs inter-procedural
information flow analysis to track if untrusted data coming from different sources can reach
sinks of interest after propagation. Our method takes into account two important elements,
namely (1) implicit data flows and (2) the access of hardware control registers.

We leveraged IDA Pro to disassemble firmware binaries. Then, we visualized the in-
formation flows and the corresponding instructions using NetworkX graphs. Finally, we
scaled the analysis by parallelizing it with GNU Parallel and running IDA Pro in au-
tonomous mode. Our approach is the first implementation to identify implicit data flows
in ARM32 firmware binaries to the best of our knowledge. In addition, it minimizes the
dependency on IDA Pro (after disassembly), so even less technical people or people with
no IDA Pro knowledge will be enabled to look at the information flows and detect potential
vulnerabilities.

Our research can have a huge impact because it could identify potential vulnerabilities
affecting devices running ARM32 firmware. Such devices can be found everywhere, from
home Internet of Things (IoT) devices used by individuals to field devices used by an

Industrial Control System (ICS).

CHAPTER 1
INTRODUCTION

The Internet of Things (I0T) refers to the network of devices that leverage internet con-
nectivity to enhance their functionality, such as being controlled remotely or exchanging
information with other systems and devices. These interconnected devices, known as IoT
devices, range from household appliances to industrial machines, and their presence is
rapidly expanding across domains. Unfortunately, like any computer system, IoT devices
are consistently found to be vulnerable to both known and unknown security threats. For
example, Zhao et al. [1] identified 385,060 IoT devices as vulnerable to the N-days vulnera-
bility attack, and Ripple 20 project [2] discovered 19 0-day vulnerabilities that could affect
hundreds of millions of devices. When these vulnerabilities are not patched, they leave 10T
devices exposed to growing and increasingly sophisticated malware attacks, posing signif-
icant threats to user privacy, data security, and even physical safety. In fact, a recent report
by Zscaler indicates a significant rise of 400% in IoT and OT malware attacks compared to
the previous year [3].

Given the alarming trend of increased attacks on IoT devices, it is imperative to proac-
tively identify and address their vulnerabilities. As an IoT device consists of hardware
and firmware, one popular way of uncovering vulnerabilities is through firmware analysis.
This is especially important as firmware is the foundational software that directly interfaces
with the hardware, representing a critical attack surface where security flaws can have far-
reaching consequences. Firmware analysis can be achieved through three main methods:
static analysis, dynamic analysis, and symbolic execution. Static analysis involves inspect-
ing the firmware code without executing the firmware binary. This method allows us to
examine the code for potential vulnerabilities without the need to run on a device or emu-

lator. On the contrary, dynamic analysis involves executing the firmware binary to observe

its behavior in real-time. Lastly, symbolic execution pertains to the analysis of firmware
without executing it but instead, representing it as an abstraction and using mathematical
expressions (symbols) to explore the feasible paths of execution.

Prior research has advanced firmware analysis and vulnerability detection through tools
like BootStomp [4] and FirmXRay [5]. Unfortunately, these tools have limitations: Boot-
Stomp seems to not work anymore and relies on outdated software, while FirmXRay has a
limited scope, targeting only Bluetooth link layer vulnerabilities on TI and Nordic devices.
Additionally, many existing works focus on basic static analyses, such as string extraction
and code matching to known vulnerabilities [6, 7, 8, 9, 1], often missing more complex
issues like implicit data flows. Our research addresses these gaps by integrating both ex-
plicit and implicit data flow analyses, providing a comprehensive and scalable approach to

firmware analysis.

1.1 Thesis Proposition

The objective of our research is to design and implement a static approach that aids in
identifying potential vulnerabilities in firmware by employing inter-procedural information
flow analysis to track whether untrusted data from various sources can reach the hardware
control registers (sinks) after propagation, taking into account both data flows that reach

these registers and implicit data flows.

1.2 Contributions

To the best of our knowledge, we are the first to develop a method that identifies implicit
data flows in ARM32 firmware binaries. Additionally, it minimizes the dependency on IDA
Pro after disassembly, enabling even less technical individuals or those without IDA Pro
knowledge to analyze the information flows and detect potential vulnerabilities. Using our
approach with IDA Pro and custom IDAPython scripts, we were able to reverse-engineer 8

IoT device binaries and identified one potential vulnerability.

Additionally, we are the first to provide a framework that aids analysts in separating
the boot state from the steady state, enabling the detection of uninitialized resource (e.g.,
peripherals) usage. Although this last analysis still requires manual effort, it represents a
significant step towards more comprehensive and automated firmware vulnerability detec-
tion.

Our research can have a significant impact because it could be used as a stepping stone/-
first step to identify potential vulnerabilities affecting devices running ARM32 firmware.
Such devices can be found everywhere, from home 10T devices used by individuals to field

devices used by an Industrial Control System (ICS).

1.3 Thesis Overview

This thesis is structured as follows: We begin with a brief background in chapter 2, where
we discuss various types of firmware for IoT devices, static analysis of firmware, implicit
data flows, hardware control registers, and vulnerabilities we expect to detect with Xplicit.
In chapter 3, we review related work, including firmware collection techniques and anal-
ysis methodologies. This chapter also compares existing tools. In chapter 4 we detail our
methodology, including an overview of our infrastructure, prototype development, analysis
at scale, and various techniques such as control flow analysis, data flow analysis, and en-
hanced data flow analysis. We also discuss our implicit data flow analysis in this chapter.
In chapter 5 we present the results of our research, covering prototype development results,
identifying risky flow in firmware, and analysis at scale results. In chapter 6, we discuss the
limitations of our approach and propose future work to enhance our analysis techniques.

Finally, chapter 7 provides the conclusion of our research.

CHAPTER 2
BACKGROUND

2.1 Types of Firmware for IoT Devices

There are two main categories of firmware for IoT devices. The first is bare-metal firmware,
which consists of a single binary running directly on the device’s hardware. In literature,
this type of firmware is also referred to as monolithic, single-binary, or blob firmware.
The second is OS-like firmware, which consists of multiple binaries and usually has more

complex functionality.

2.2 Static Analysis of Firmware

To conduct static analysis, we must first obtain the source code of the firmware, which is a
difficult task, as we discuss later in chapter 3. An alternative approach involves analyzing
the assembly code, which is readily obtained through binary disassembly. The assembly
code serves as a foundation for static information flow analysis (also known as static data
flow analysis), which facilitates the tracing of how information propagates from a source
(e.g., input from a peripheral) to a sink (e.g., hardware control register). This type of
analysis is also referred to as static taint analysis because it tracks how data originating
from sources of interest, known as tainted data, propagates to determine if and how it

reaches designated sinks within the program.

2.3 Implicit Data Flows

To illustrate implicit data flows and how they differentiate from (explicit) data flows, we
list a small pseudocode snippet in Listing 2.1. In line 1, variable z is defined. In line 2,

variable y is calculated based on x; thus, y depends directly on x, indicating an information

flow from x to y. However, variable z appears to be independent of z since it is assigned
a hardcoded value. In reality, though, z is implicitly dependent on x, because its value is
determined by the condition of x being greater than 0. If z > 0, z is set to 1; otherwise, z

is set to 0. This demonstrates why we classify this type of information flow as implicit.

x =1
ry = x = 1
if x > 0:
z =1

else:
z =0

Listing 2.1: Implicit Data Flow Example

2.4 Hardware Control Registers

Another overlooked part of the firmware are the hardware control registers. Only recently
have researchers begun to examine these more closely for improved emulation and testing
of firmware [10]. This effort, led by Feng et al., aimed to enhance dynamic analysis by more
accurately emulating firmware peripherals. To accomplish this, they utilized the models
they had developed concerning the operation of peripherals, focusing on their associated
hardware control registers, access patterns, and their management. As a result, their system
successfully identified seven previously unknown vulnerabilities in ten real-world firmware

samples.

2.5 Vulnerabilities of Interest

Before we continue with the rest of the thesis, we believe it is essential to elaborate on the
vulnerabilities that our tool will be able to identify.

A vulnerability that we expect to detect is the taint-style vulnerability. We expect to
identify cases where input from untrusted or tainted sources influences critical operations
in the firmware through implicit data flow analysis. This analysis could potentially expose

injection attacks or data corruption risks. To the best of our knowledge, our tool is the first

to discover implicit data flows in firmware, suggesting that prior work may not have had
the capability to detect such vulnerabilities through this method.

We have already identified a potential vulnerability of this type, where the value held by
the control register UARTS_SR (source), which depends on the Modbus protocol, impacts
the hardware control register USB_EPOR (sink). This could cause unpredictable behavior
and potentially disrupt the USB functionality. We present our findings in detail in the
subsection Identifying Risky Flow in Firmware.

Another vulnerability that we expect Xplicit to help identify is the use of an uninitial-
ized resource. As we mentioned earlier, by separating the boot state and the steady state of
firmware, we aim to detect such cases by comparing the hardware control registers that are
initialized during boot with those used during the steady operation of the DuT. To the best
of our knowledge, no other work has attempted to separate the boot state from the steady

state of firmware, leaving such vulnerabilities undetected by prior research.

CHAPTER 3
RELATED WORK

The literature survey is divided into 3 sections: Firmware Collection, Firmware Analysis,
and Evaluation & Comparison of Existing Tools.

Firmware Collection summarizes existing techniques that are used for the collection
of firmware. Firmware Analysis elaborates on the techniques that have been used for the
analysis of firmware. Finally, we conclude in Evaluation & Comparison of Existing Tools

with an overview of previous works’ comparison.

3.1 Firmware Collection

Obtaining firmware samples is not trivial, as most vendors do not publish binaries, which
makes it difficult for researchers to analyze them. Prior research has commonly employed
crawling as the primary technique to obtain firmware. Researchers extensively utilized
crawling methods to access vendor websites and support pages [6, 11, 9, 12, 13], FTP
sites [8], and Google Play [5]. Other less popular techniques that have been used include
extraction of the firmware image from the corresponding mobile Apps [5, 14], and a phan-
tom device [15]. Wen et al. [5] specifically crawled Google Play to download the mobile
Apps and extract the firmware image from them. Additionally, Zhu et al. [14] tried to use
firmware dumps exported by the ports used for debugging (UART or JTAG) but found that

the manufacturers had disabled the debugging ports.

3.2 Firmware Analysis

Ensuring the security of embedded systems necessitates firmware analysis and robust firmware

vulnerability detection techniques. Researchers have explored various approaches to ana-

lyze firmware and identify weaknesses in firmware binaries. This section delves into the

primary methods employed in the field, categorized into static analysis, dynamic analysis,

and symbolic execution.

3.2.1

Static Analysis

Static analysis techniques examine the firmware code without executing it, allowing for

rapid analysis of large numbers of firmware images. The primary static analysis techniques

used for firmware vulnerability detection include:

* Static Information Flow Analysis: These methods track data flow within the firmware

to identify potential security vulnerabilities, such as information leaks or unautho-
rized privilege escalation. Redini et al. [4] used BootStomp for both static and
dynamic symbolic execution to uncover vulnerabilities in bootloaders. Redini et
al. [16] developed Karonte, a framework designed for the static analysis of multi-
binary firmware to detect vulnerabilities arising from complex binary interactions.
Cheng et al. [12] proposed DTaint, a tool for static binary analysis focusing on de-
tecting taint-style vulnerabilities in Linux-based firmware. Wen et al. [5] introduced
FirmXRay, which leverages static analysis to detect Bluetooth link layer vulnerabil-

ities in firmware.

Code Matching: This approach compares firmware code to databases of known
vulnerable code snippets and analyzes firmware versions to identify potential security
vulnerabilities. For instance, Costin et al. [6] conducted large-scale static analysis of
firmware images, highlighting the prevalence of known vulnerabilities in numerous
devices. Similarly, David et al. [9] developed FirmUp, a tool designed for the static

detection of known vulnerabilities by matching firmware code against known CVE.

Feature Detection: This technique involves identifying patterns and characteristics

within the firmware code that might indicate vulnerabilities. Feng et al. [8] intro-

duced Genius, a scalable feature extraction and vulnerability detection tool that uses
static analysis to identify potential security issues by comparing firmware features to

those of known vulnerable firmware.

3.2.2 Dynamic Analysis

Dynamic analysis techniques involve executing the firmware in a controlled environment
to observe its behavior, enabling the detection of vulnerabilities that may not be apparent
through static analysis alone. The primary dynamic analysis techniques used for firmware

vulnerability detection include:

* Emulation: Emulation techniques create a software model of the hardware platform
that the firmware is designed to run on, allowing the firmware to be executed in a
safe environment where its behavior can be monitored for vulnerabilities. Koscher
et al. [17] presented SURROGATES, a system for near-real-time emulation of em-
bedded devices that enables communication with their peripherals through a custom
FPGA bridge. Gustafson et al. [18] introduced PRETENDER, a system that auto-
matically creates models of firmware peripherals to facilitate emulation by monitor-
ing interactions with the original hardware. Kim et al. [19] developed FIRMAE, a
tool capable of emulating a large dataset of firmware images, successfully emulating
almost 80% of FIRMADYNE’s dataset. Spensky et al. [20] created CONWARE, a
framework that aids in the emulation of embedded systems by enabling the automatic
generation of models for hardware peripherals. Zaddach et al. [21] presented Avatar,
a dynamic analysis framework that emulates the peripherals of a physical device to
facilitate firmware analysis. Chen et al. [11] proposed FIRMADYNE, the first sys-
tem for automated dynamic analysis of Linux-based firmware, capable of extracting

and emulating firmware filesystems to detect known and unknown vulnerabilities.

* Fuzzing: Fuzzing involves feeding the firmware with a large number of inputs to

trigger vulnerabilities, to identify issues that may be difficult to detect with other

9

techniques. Zhu et al. [14] introduced FIoT, a framework for detecting memory
corruption vulnerabilities through symbolic execution and fuzzing, which combines

static and dynamic techniques to thoroughly test firmware security.

* Rehosting: Rehosting moves the firmware to a different hardware platform where
it can be run in a more controlled environment, which is advantageous for large-
scale dynamic analysis by avoiding the limitations of emulation techniques. Fasano
et al. [22] provided a comprehensive overview and comparison of rehosting and em-
ulation techniques, highlighting the benefits of rehosting for dynamic analysis of

firmware on a large scale.

3.2.3 Symbolic Execution

Symbolic execution is a technique that explores the feasible execution paths of the firmware
code, enabling the identification of vulnerabilities that may be difficult to detect with other
methods, such as those that only occur under specific conditions. Subramanyan et al. [23]
used symbolic execution for verifying firmware security properties, introducing a property
specification language and a verification algorithm based on symbolic execution to ensure
the confidentiality and integrity of firmware. Johnson et al. [24] presented Jetset, a system
that deduces the behavior firmware expects from peripherals through symbolic execution,
enabling the accurate emulation of firmware. Davidson et al. [25] developed FIE, a sym-
bolic execution tool tailored for the MSP430 architecture, designed to find memory safety

violations and peripheral misuse errors in firmware.

3.3 Evaluation & Comparison of Existing Tools

In this section, we compare several notable existing tools and frameworks for firmware
vulnerability detection. We also highlight the advantages of our approach.
Redini et al. [4] created BootStomp, a tool that combines static analysis and dynamic

symbolic execution to identify vulnerabilities in bootloaders. Although this tool is relevant

10

to our work, we encountered several challenges when attempting to integrate BootStomp
into our analysis. Specifically, BootStomp was developed using outdated software ver-
sions: IDA Pro 6.95 and Python 2.7. Our attempts to update the tool for compatibility with
newer versions of IDA Pro and Python were unsuccessful. Furthermore, we were unable
to replicate the results reported by the authors. Despite our efforts to contact the authors
via email and through an issue on their GitHub page !, we did not receive a response. As a
result, we concluded that BootStomp is out of date and not suitable for our needs.

Wen et al. [5] introduced FirmXRay, a tool for automatic static analysis of firmware to
detect Bluetooth link layer vulnerabilities. While FirmXRay is relevant to our research, its
scope is limited to BLE link layer vulnerabilities on TT and Nordic devices. Our proposed
research has a broader scope.

Many previous works in firmware vulnerability detection (e.g., [6, 7, 8, 9, 1]) did not
perform static information flow analysis. Instead, these works often relied on more basic
static analyses such as string extraction, unpacking, and the collection of interesting files
(e.g., authorized keys files). Most of these approaches focus on identifying already known
vulnerabilities by matching firmware code or versions with known vulnerable code (e.g.,
[8, 9]) or by determining if the firmware version is known to be vulnerable (e.g., [1]).

Table 3.1 provides an overview of the systems that perform vulnerability detection in
firmware. The term “System” is used to refer to the implementation of the proposed tech-
niques. We denote with an “N/A” followed by the first author’s name and publication date,
the systems that were not named by their authors. The systems are sorted in alphabetic
order.

In Table 3.2 we present a comparison of the analysis techniques used by the systems

that perform static analysis.

"https://github.com/ucsb-seclab/BootStomp/issues/12

11

https://github.com/ucsb-seclab/BootStomp/issues/12

Table 3.1: Overview of Existing Firmware Vulnerability Detection Systems

System Name Supported Architecture Sample Size Analysis Detected Vulnerabilities
Static Dynamic Sy mbo.llc Known Unknown Undefined
Execution
Avatar [21] ARM 3 v v 1
BootStomp [4] * ARM 5 v v 8
DTaint [12] ARM, MIPS 6 v v 21
FIE [25] * MSP430 9 v 21
FloT [14] ARM, FreeRTOS 115 v v 35
FIRMADYNE [11] * ARM, MIPS 9,486 v 74 14
Firmalice [26] ARM, PPC 3 v v 2
FirmUp [9] ARM, MIPS, PPC, Intel ~2,000 v 373
FirmXRay [5] * ARM 793 v 2,146
Genius [8] ARM, MIPS, Intel 8,126 v 23
Karonte [16] * ARM 952 v 5 46
P2IM [10] * ARM 10 v 7
N/A (Costin’14) [6] ARM, MIPS 32,000 v 38
N/A (Costin’16) [7] ARM, MIPS 1,925 v v 9,271
* denotes that the system is open source
Table 3.2: Overview of Static Analysis Systems
System Name Disassembler/ Base Address Control Data Inter- Constant Multi- Implicit
Implementation Identification Flow Flow Procedural Propagation Binary Flow
BootStomp [4] IDA Pro, angr v v
DTaint [12] angr v v v
FIoT [14] IDA Pro, angr v v
Firmalice [26] Python, C v v
FirmUp [9] IDA Pro, angr v v
FirmXRay [5] Ghidra v v v v v
Genius [8] IDA Pro v
Karonte [16] angr v v v v
N/A (Costin’14) [6] BAT
N/A (Costin’16) [7] RIPS

12

CHAPTER 4
METHODOLOGY

4.1 Overview

In this chapter, we detail the methodology employed by Xplicit, a system we designed to
explore and identify potential vulnerabilities in ARM32 firmware. Our approach hinges
on robust static analysis techniques, starting with the disassembly of firmware binaries
and followed by conducting static information flow analysis. To enhance the depth and
accuracy of our findings, we also incorporate implicit data flow analysis. This refined
method allows Xplicit to meticulously trace how data propagates through the firmware,
moving from input sources to hardware control registers, or sinks.

To systematically address the challenges of ARM32 firmware static information flow
analysis, Xplicit initially focused on a targeted analysis of a thermostat’s firmware, using
it as a baseline to refine our techniques and workflow. This preliminary phase involved
a detailed examination of two distinct firmware versions, allowing us to identify changes
and potential vulnerabilities across these iterations. After establishing a robust analytical
foundation with the thermostat firmware, we scaled our methodology to include a broader
range of firmware samples and parallelized the analysis. This scaling was instrumental in
testing the applicability and effectiveness of our analysis techniques across a wider array
of devices and ARM32-based chipsets. By gradually expanding the scope of our analy-
sis, Xplicit was able to optimize our tools and processes, ensuring they were capable of

handling a larger number of firmware samples.

13

4.2 Infrastructure

4.2.1 Hardware

The backbone of our experimental setup is a lab server running Linux Ubuntu 20.04.3 LTS,
chosen for its stability and compatibility with a wide range of analytical tools. This server
is equipped with dual Intel Xeon E5-2450 CPUs, featuring a total of 16 physical cores and
32 threads, and 94GB of RAM.

4.2.2 Software Tools

Our analysis relies heavily on a suite of sophisticated software tools, each selected for its

specific capabilities to support different aspects of firmware analysis:

* IDA Pro v7.6 [27]: This disassembler is the cornerstone of our reverse engineering
process, providing advanced capabilities to deconstruct ARM32 firmware into a more
analyzable form. Its comprehensive support for ARM architectures and extensive
feature set make it ideal for our analysis. Jiang et al. [28] performed an empirical
study on the ARM disassembly tools existing. Based on their results IDA Pro has
the best F1 Score and the best precision, while Hopper [29] has the best recall. This
is why we chose to use IDA Pro as the most suitable disassembler for our analysis,

ensuring both accuracy and reliability in our disassembly process.

* Python & IDAPython: We implemented our approach in the Python programming
language. Python’s standard library offers tools well-suited to many tasks and has
been used many times to develop tools that analyze software [30, 31]. We used
Python scripts extensively to automate repetitive aspects of the disassembly process
and to script complex analyses. IDAPython is an IDA Pro plugin that allows us to
run Python scripts in IDA Pro. This integration enhances IDA Pro’s functionality, al-

lowing us to customize and extend its capabilities to suit our specific research needs.

14

* NetworkX [32]: A Python package that we employed for creating and analyzing
complex graphs of the firmware’s control and information flows. NetworkX allows
us to visualize data paths and interactions within the firmware. This tool is crucial
for understanding how data moves through the system and for identifying potential

security vulnerabilities.

* GNU Parallel [33]: To manage and optimize the processing of multiple firmware
analyses simultaneously, GNU Parallel is utilized. This tool enables efficient use
of our server’s processing capabilities, significantly reducing the time required for

comprehensive multi-firmware analysis.

4.3 Prototype Development

To develop our prototype, named Xplicit, our initial focus was on single-binary ARM32
firmware. We selected a thermostat manufactured by Beijing Brade Controls Tech Co.,
Ltd., as our DuT. This device operates on an ARM Cortex-M3 MCU, which is based on
the 32-bit ARM v7-M architecture. The firmware is segmented into two binaries: the *boot
binary’ and the main binary’, distinct from the boot and steady states of the firmware.

We analyzed two versions of this firmware, v2.98 and v3.27, to track changes and iden-
tify potential vulnerabilities across updates. The tools configured for this analysis were
outlined in the Infrastructure section; however, their application in the prototype develop-

ment focused specifically on:

* Custom Scripting and Automation with Python/IDAPython: Enhancing the au-

tomation and repeatability of our analysis.

* Accurate Memory Mapping with SVD Files: Ensuring the physical configurations

in our analyses align with the actual hardware.

* Graph Creation and Analysis with NetworkX: Creating the graphs based on the

control and data flows of the firmware, and then analyzing them.

15

Our code, developed in IDAPython, enabled us to perform detailed Control Flow Anal-
ysis and Data Flow Analysis. The outputs were generated in SVG format to ensure the high
resolution and clarity of the graph representations, crucial for detailed examination and pre-
sentation. Alternative output formats can be generated as needed, to support downstream

analyses or integration with other tools.

4.4 Analysis at Scale

In this section, we detail the steps taken to scale up the automation and efficiency of our
firmware analysis process, a key component of the Xplicit tool’s functionality. Our scaling
efforts focused on three core analytical techniques: Control Flow Analysis, Data Flow
Analysis, and Data Flow Analysis with Implicit Flows.

To automate the disassembly and analysis of ARM binaries, we leveraged IDA Pro’s
ability to run in batch mode using command-line options. This approach allowed us to
perform complex tasks like disassembly and code analysis without manually opening the
program’s graphical user interface, thereby streamlining the process and reducing manual
intervention. By doing so, we successfully automated both the Control Flow and Data Flow
processes, resulting in a scalable system capable of processing each firmware binary within
seconds for the Control Flow and minutes for the Data Flow Analysis.

The enhancements were not just limited to automation. We also developed the capabil-
ity to process multiple firmware samples in parallel within the Xplicit tool by using GNU
Parallel. This significant upgrade streamlined our analysis procedures, enabling the simul-
taneous processing of several samples and dramatically improving our research throughput.

These advancements have substantially increased the effectiveness and efficiency of the
Xplicit tool, establishing it as a powerful solution for comprehensive firmware evaluation
at scale. The ability to concurrently process multiple firmware samples can greatly enhance
our capacity to identify potential vulnerabilities across a wide spectrum of devices.

Currently, this process works for ARM ELF binaries. Since we are building a prototype

16

of Xplicit, we did not want to add extra complexity by loading binaries for which we do not
have any information. Besides, the problem of properly loading a binary file has already

been studied and solved to a satisfying degree in previous work [5].

4.5 Control Flow Analysis

In this section, we detail the methodology employed to develop the Control Flow Graph
(CFG) using IDAPython, an essential component of our analysis toolkit. The development
of the CFG required writing custom code that interacts extensively with IDA Pro’s disas-
sembly capabilities. Our IDAPython script initiates by iterating over all the instructions
within each function as identified by IDA Pro. For each instruction, the script determines
the function to which it belongs. It then systematically identifies all cross-references from
the current function to other instructions, enumerating these instructions in the order they
are called. Importantly, the script only adds instructions to the CFG if they are part of an
identified function. If an instruction that is cross-referenced does not belong to any func-
tion, it is excluded from the graph. Similarly, if our analysis encounters an instruction
outside of any function context, it does not proceed to find its cross-references.

One notable challenge in this process is IDA Pro’s occasional inability to correctly
assign code to functions. To address this for the thermostat firmware and enhance the
accuracy of function determination, we used the linear sweep disassembling algorithm [34].
This algorithm aids in correctly placing orphaned code into appropriate functions, thereby
improving the comprehensiveness and reliability of our Control Flow Analysis.

A primary use of the CFG is to assist in distinguishing between the boot state and the
steady state of the firmware. To the best of our knowledge, there is no defined separation
between these states in the literature. Therefore, we have established a process based on
specific assumptions about the firmware behavior. We assume that after the initialization
of the Control Registers and Peripherals during the boot state, the firmware enters a loop of

steady operation without exit options, which we consider as the steady state of the firmware.

17

sub_80339B4

0
/

nullsub_15

/

Figure 4.1: Part of the Control Flow Graph created with Xplicit for v3.27 of the DuT

Accordingly, we define the steady state as the first reachable non-returnable function from
the start of the boot process. This function is expected to be depicted in the CFG as a root
that branches out into a tree covering the steady-state operations. Furthermore, the CFG
can be utilized to identify the interrupt handlers within the firmware, providing a deeper

understanding of its structure and operation.

4.5.1 Control Flow Graph Visualization

We visualize the control flow analysis through a graph model, as depicted in Figure Fig-
ure 4.1. The nodes in the graph represent functions within the firmware, and the edges
illustrate the control flows between these functions. Each node is labeled with the function
name or identifier assigned by IDA Pro, and each edge is labeled to show the sequential
order in which functions are called. The direction of each edge indicates the flow of control.

The visual representation of the CFG employs a color-coded system designed to en-
hance the clarity and readability of the analysis. This system, which we developed, uses
distinct colors to indicate various functional aspects of the firmware, aiding in quick visual

assessment and understanding:

18

* Green nodes: Represent functions that are part of the execution path starting from

the main function, highlighting active paths in the firmware’s operation.

* Grey nodes: Denote functions called before the firmware reaches the main function,

illustrating the initialization phase of the firmware.

* Red nodes: Highlight functions that are unreachable from the main function’s exe-

cution path, typically representing interrupt handlers or unused code segments.

* Green edges: Indicate feasible paths originating from the main function, showing

potential flows of execution within the firmware.

* Black edges: Show paths that are not reachable from the main function, which may

indicate conditional or exceptional flows that are not activated in normal operation.

This approach to visualizing the control flow simplifies the identification of key operational

features in the firmware’s execution.

4.6 Data Flow Analysis

In this section, we discuss the Data Flow Analysis techniques implemented in Xplicit,
which play a pivotal role in mapping the propagation of data within firmware binaries. Our
approach leverages Use-Definition (Use-Def) and Definition-Use (Def-Use) chains, which
are fundamental in understanding instruction dependencies and generating the Data Flow
Graph (DFG). Def-Use chains link definitions of variables to their points of use, whereas
Use-Def chains trace the definitions of variables used in instructions.

Our scripts are robust, designed to function with or without specific chipset information:

* If the specific chipset is known and an SVD file is available, we import it into IDA
Pro. This import process helps accurately rename the firmware segments, aligning

them with the physical hardware layout.

19

 If only the family of the processor is known (e.g., Cortex-M3), without specific
chipset details, we manually configure the processor’s memory mapping in IDA Pro

to simulate the appropriate segments.

To construct the DFG, our custom IDAPython scripts analyze the firmware as follows,

depending on the availability of the SVD file:

1. With SVD:

* The scripts traverse memory addresses reserved for peripherals and hardware
control registers (Addresses > 0x40000000) as categorized by IDA Pro after

processing the SVD file.

* We specifically focus on instructions that are labeled during the SVD applica-
tion by IDA Pro, as these typically interact with actual peripheral and hardware

control registers.
* Cross-references to these labeled instructions are examined, and Data Flow
Analysis is performed within their respective functions.
2. Without SVD:
* Instructions within the code segment, which typically contains the core code of
the firmware, are iterated (Addresses < 0x20000000).

* For instructions utilizing ‘LDR’ commands, we check if they have a cross-

reference to an address of a hardware control register or peripheral.

 If an instruction satisfies this check, we perform Data Flow Analysis for the

function to which this instruction belongs.

To enhance our understanding of the expected memory segments and gain insight into
the memory mapping of the chipsets used in the Devices Under Test (DuTs), we provide

a consolidated memory mapping for Cortex-M3 and Cortex-M4 processors, both based on

20

the ARM v7-M architecture. All the DuTs analyzed in our study are equipped with either
Cortex-M3 or Cortex-M4 chipsets. The memory mapping, detailed in Table 4.1, outlines
the address ranges for code segments, RAM, peripherals, and other essential system areas,

which are pivotal for our data flow analysis.

Table 4.1: Memory Mapping for Cortex-M3 and Cortex-M4 ARM Processors

Segment Address Range

CODE 0x00000000 Ox1FFFFFFF
RAM 0x20000000 Ox3FFFFFFF
PERIPHERAL 0x40000000 Ox5FFFFFFF
EXTERNAL DEVICE 0xA0000000 OxDFFFFFFF
PRIVATE PERIPHERAL BUS (Internal) 0xE0000000 0xEQO3FFFF
PRIVATE PERIPHERAL BUS (External) 0xE0040000 O0xEQOFFFFF
SYSTEM 0xE0100000 (O ENENERE RN

4.6.1 Data Flow Graph Visualization

We visualize the Data Flow Analysis through a graph model, as depicted in Figure Fig-
ure 4.2. Unlike the Control Flow Graph (CFG) which operates at the function level, the
Data Flow Graph (DFG) operates at the instruction level, leading to distinct visual repre-
sentations.

In the DFG, nodes represent individual instructions, and edges denote the data flows
between them. Each node is labeled with the corresponding instruction address followed
by the instruction itself. Edges are labeled with the variable (e.g., general-purpose register)
through which the data flows from one instruction to another, with arrows indicating the
direction of the flow.

Additional visual elements in the DFG provide insights into the data flow characteris-

tics:

* Green nodes: Represent LDR instructions that load the address of a peripheral or
hardware control register into general-purpose registers. They mark the initial access

to a peripheral’s address.

21

0x8033280
LDR R2, =0xIFFFFF80
R2 RI
0x8033282
ANDS RI,R2; R1=0x5800, R2=0x 1 ffff80
\RI RO
0x8033284
ORRS RI, RO; RO=0x8000000, R1=0x5800

Figure 4.2: Example of a Data Flow Graph created with Xplicit for firmware version

v3.27 of the (DuT)

Light blue nodes: Indicate instructions where there is direct access or use of a pe-

ripheral or hardware control register.

Red nodes: Denote source instructions where immediate values are introduced into

the data flow, influencing subsequent operations.

Orange nodes: Similar to red nodes, but specifically involve "LDR’ instructions,

typically indicating the reading from a peripheral or hardware control register.
Gray nodes: Intermediate nodes that alter the data values or registers being tracked.

Orange edges: Represent data flows originating from different functions, highlight-
ing inter-procedural interactions. Inter-procedural analysis was a feature that we
added later on in the data flow analysis, but we still thought it would be better to

mention it here. More details are given in the next section, section 4.7.

Blue edges: Indicate the existence of an implicit data flow. These edges do not have
labels, as the flow of data is implicit and not explicit, unlike the other edges which
show explicit data flows. Like the inter-procedural analysis, implicit flows were a
feature that we added later on in the data flow analysis, but we still thought it would

be better to mention it here. More details are given in section 4.8.

22

Figure Figure 4.2 showcases a subgraph from our DFG, illustrating each visual element
employed in our analysis. This example underscores the flow of data through specific
instructions, providing a clear depiction of how variables and registers are manipulated

across different operations within the firmware. Specifically, we observe the following:

* 0x8033286: The hardware control register SCB_VTOR (Vector Table Offset Regis-
ter) is loaded into the general-purpose register RO in instruction 0x8033286, there-

fore, this node is colored green to denote this operation.

* 0x8033288: SCB_VTOR is accessed in instruction 0x8033288, indicated by a light

blue node which signifies access of a control register.

¢ 0x8033284: R1, used in instruction 0x8033288, is defined at instruction 0x8033284.
The value in RO, coming from another function “sub_80331C0” (visualized with an
orange edge), originates from instruction 0x80331c6, which assigns an immediate

value to RO, thus the node is red. R1 originates from instruction 0x8033282.

¢ 0x8033282: The definition of R1, used in instruction 0x8033282, occurs in instruc-
tion 0x80331c2. This instruction assigns an immediate value to R1, therefore, the
node is painted red. This flow of information originates from another function,
“sub_80331C0,” and is represented with an orange edge. Additionally, R2 used in
instruction 0x8033282 is defined at instruction 0x8033280, which assigns the value
O0x1FFFFF80 to R2. This value could be either an immediate value or the address of

a hardware control register, hence, it is colored orange.

4.7 Enhanced Data Flow Analysis

After developing the first version of our Xplicit prototype, we performed multiple iterations
to improve its data flow analysis. These improvements included the incorporation of inter-
procedural analysis, constant propagation, control register and peripheral discovery, identi-

fying access patterns of the control registers and peripherals, detection of control registers

23

and peripherals without SVD, and implicit data flow analysis. By leveraging these tech-
niques, our methodology provides a deeper and more comprehensive analysis of firmware

binaries, ensuring a more robust identification of potential vulnerabilities.

4.7.1 Inter-procedural Analysis

Initially, our approach could only track data flow within individual functions, which lim-
ited the scope of our analysis. By incorporating inter-procedural analysis, we signifi-
cantly increased the size and complexity of the DFGs, allowing us to track information
flow across multiple functions. Figure Figure 4.2 illustrates these inter-procedural flows
with orange-colored edges, highlighting the data flow from instructions 0x80331c2 and
0x80331c6 in function “sub_80331CO0” to instructions 0x8033282 and 0x8033284 in func-
tion “sub_8033280”.

4.7.2 Constant Propagation

To further enhance our data flow analysis, we implemented basic constant propagation.
This technique helps determine whether the value flowing to a control register or peripheral
originates from an immediate value. This distinction is crucial because if data originates
from an immediate value, the behavior is fixed. In contrast, if data does not come from
an immediate value, the source is potentially a peripheral, which is a primary focus of our
analysis. Thus, an analyst looking at the DFG can quickly ignore data that comes from an
immediate value.

We handle the most common classes of instructions found in most cases. Specifically,
we handle the "MOV”, ’LDR”, "ORR”, AND”, and "LSL” instructions. Our code is
modular, allowing for the addition of more instructions by implementing the corresponding
functionality.

Constant propagation enhances our analysis in cases where constants propagate to a

control register or peripheral instead of a general-purpose register. Figure Figure 4.3 depicts

24

0x8001b8a 0x8001b82
BIC.W RO,RO0,#3 MOV RI, R0; RO=0x2

0x8001b8e
ORRS RO,RI; R1=0x2

Pl
S

RO

Figure 4.3: Constant Propagation with Xplicit for v3.27 of the DuT

a subgraph of the DFG containing constant propagation analysis. In instruction 0x8001b86,
the control register named RCC_CR (clock control register) is loaded into the general-
purpose register R2. Then, in instruction 0x8001b90, the value of the general-purpose
register RO is stored into [R2,# RCC_CFGR - 0x40021000)].

Through constant propagation, we know that R2 is RCC_CR, corresponding to the
memory address 0x40021000. RCC_CFGR (clock configuration register) corresponds to
the memory address 0x40021004. Thus, the calculation performed is:

0240021000 + 0240021004 — 0240021000 = 0240021004. RCC_CFGR is located at
0x40021004, indicating that this instruction stores the value of the general-purpose reg-

ister RO into RCC_CFGR.

4.7.3 Control Register & Peripheral Discovery

Initially, our code could only track uses ("STR”) that occurred immediately after a con-
trol register or peripheral was loaded ("LDR”) into a general-purpose register. Manual
inspection of the output graphs revealed that the data flow was often incomplete, failing to
accurately represent the binary’s data flow. The root cause was that if a control register or
peripheral was loaded into a general-purpose register and its value changed subsequently,

our code did not track this information flow, leading to its exclusion from the DFG.

25

To address this issue, we enhanced our methodology to track changes in the values of
general-purpose registers after they have been loaded with control registers or peripherals.
This enhancement significantly improved our understanding of how data flows within the

firmware of the DuT, as we show later in the results.

4.7.4 Identification of Control Registers & Peripherals without SVD

One capability that we added to our tool is the ability to perform the analysis without rely-
ing on SVD file data, as described in Data Flow Analysis. We enhanced our methodology
to identify control registers and peripherals even in the absence of SVD files.

Our approach allows us to detect more control registers and peripherals without the
SVD file compared to when the SVD file is applied. This is because some peripherals
are not recognized by the SVD file, resulting in IDA Pro not generating the corresponding
segments in its memory mapping. By iterating over these addresses directly, we ensure that

such control registers and peripherals are not overlooked.

4.8 Implicit Data Flow Analysis

We introduced the concept of implicit flow analysis with an example in Listing 2.1. After
incorporating implicit flows into our analysis, we observed that they add negligible over-
head to the analysis time of our tool while providing more comprehensive information. An
illustration of our implicit data flow analysis can be seen in Figure Figure 4.4.

In our visual representation, a blue edge indicates the existence of an implicit data flow.
The blue edge does not have a label, as the flow of data is implicit and not explicit, unlike
the other edges which show explicit data flows.

As we show later in the results, the introduction of implicit flows into our analysis led

to significant enhancements.

26

///‘Rs//s

0x8037146
LDRW RO, [R5R4,LSL#2]; RO=[USB_EPOR]

0x803714a
UBFX.W RO, RO, #4, #2

RO

0x803714e
CMP RO, #1

l

0x8037150
BNE loc_8037186

0x8037152
MOV RO,R3

0x8037186

o
LDR RO, =dword_200001B4

Figure 4.4: Implicit Data Flow Analysis created with Xplicit for v3.27 of the DuT

0x8037162

0x80371a4
LDR RO, [R5]; RO=[USB_EPOR]

/0){8037 166

LDR RO, [R6]

0x803717¢

RO LDR RO, [R6]

0x8037168
UBFX.W RO, RO, #0xC, #2

iRo

0x803716¢

CMP RO, #1 RO

RO

0x803716e

R6 BNE loc_8037186

R7 R7 l

0x803717e 0x80371a6
ANDS RO, R7; R7=0xbf8f ANDS RO, R7; R7=0xbf8f

0x8037180 0x80371a8
EOR.W RO, RO, #0x3000 EOR.W RO, RO, #0x3000

RO RO

27

ADDW R6,R5 R4,LSL#\

RS

CHAPTER §
RESULTS

5.1 Prototype Development Results

5.1.1 Separation of Boot & Steady State

In Figure 4.1, we observe that the function “sub_8005938 is called from the start function.
This function serves as the root of a large tree that branches out into multiple functions,
indicating that all these functions are called from “sub_8005938”. This behavior aligns
with our expectation for identifying the beginning of the steady state, suggesting that the
steady state begins within the function “sub_8005938”.

To locate the exact point where the steady state starts, we examine IDA Pro’s CFG
depiction of this specific function. IDA Pro’s CFG provides details at the basic block level,
allowing us to pinpoint the details of the function “sub_8005938”.

In Figure 5.1 we see that function “sub_8005938” branches out and links initially to the
following functions “sub_803ECB4”, “sub_80269B8”, “sub_8027960”, “sub_80088B8”,
“sub_8006950”, “sub_8027A74”, “sub_803EBIC” and “sub_80373FC”. Afterward, the con-
trol flow passes to “loc_803D526”. We can also observe that the firmware enters a loop
when it reaches “loc_803D526”. Given this control flow pattern, we determine that the
steady state begins at “loc_803D526”. All control flows preceding “loc_803D526” are con-

sidered part of the boot state.

5.1.2 Control Register & Peripheral Discovery Results

The improvement in tracking control registers and peripherals led to a substantial increase
in the size and completeness of our data flow graphs. After implementing this change,

our graphs grew by more than 100%, as shown in Table Table 5.1. In the boot binary, the

28

P

sub_8005938

FUNCTION CHUNK AT seg000:0803D4FC SIZE 000000E8 BYTES

LDR RO, =(loc_803D4FC+1)

BX RO ; loc_BO3D4FC
; End of function sub_8005938
=

; START OF FUNCTION CHUNK FOR sub_8005938

loc_803D4FC

BL sub_803ECB4
BL sub_80269B8
BL sub_8027960
BL sub_80088B8
BL sub_8006950
BL sub_8027A74
BL sub_B803EB9C
BL sub_80373FC
LDR R5, =byte_20000000

MOVW RO, #0x4D1
STRH RO, [R5, # (word_20000034 - 0x20000000)]
LDR R4, =byte_2000300C

£J$ 5
il e =1
loc_803D526
BL sub_802789C
LDRH RO, [R5, # (word_2000000E — 0x20000000)]
CENZ RO, loc_803D540

0

Figure 5.1: Control Flow Graph from IDA Pro for function sub_8005938 of DuT’s v3.27

number of nodes increased from 466 to 974, and edges from 422 to 867. Similarly, in the

main binary, nodes increased from 354 to 762, and edges from 414 to 883.

Table 5.1: Improvement in the Discovery of Control Registers & Peripherals

Binary # Before After Increase

Nodes 466 974 109.01%
Edges 422 867 105.45%

Nodes 354 762 115.25%
Edges 414 883 113.29%

Boot

Main

5.1.3 Identification of Control Registers & Peripherals without SVD Results

The ability to detect control registers and peripherals without the SVD file significantly
improved the comprehensiveness of our analysis. We observed that our tool identified
more control registers and peripherals when the SVD file was not applied.

As we show later in the results, Appendix A provides the analytical validation of these

findings, demonstrating the increased detection capabilities and highlighting specific in-

29

stances where peripherals were not recognized by the SVD file but were successfully iden-

tified through our enhanced methodology.

5.1.4 Defining Performance of Identifying Control Registers & Peripherals

Our refined approach has enabled the precise identification and analysis of all the control
registers and peripherals used by the firmware of the DuT.

Utilizing the reference manual for the Cortex-M3 and the STM32F103ZE chipset, along
with the SVD for this chipset, was crucial.

Furthermore, we employed the memory mapping of the Cortex-M3 to conduct a broader
analysis of the firmware, even without specific knowledge of the chipset used.

Performance analysis is achieved using a metric that provides a rate of success as a
factor of control registers identified. This metric value provides the success rate in terms of

percent value (%).

CR.DFG

CR IDAPro " 100% (5.1

Equation 5.1 defines “CR_DFG” as the control registers found through the DFG, and
“CR_IDAPro” represents the control registers identified via IDA Pro. Our results show a
100% success rate in identifying the control registers regardless of the knowledge of the
specific chipset used by the firmware. The high success rate bolsters confidence in the

research approach and thoroughness of the analysis.

5.1.5 Implicit Data Flow Analysis Results

The introduction of implicit data flows into our analysis led to significant enhancements.

Table Table 5.2 compares the graphs before and after the inclusion of implicit data flows.
We observe that the number of nodes and edges increased by more than 4% and 6%,

respectively. The number of connected components decreased, while the size of the largest

component increased. Although this might seem counter-intuitive, it indicates that some

30

existing components merged to form larger components, leading to more complete infor-
mation about the data flow in the firmware.

Table 5.2: Before and after the Discovery of Implicit Data Flows

Binary Attribute/Feature Before After Change
Boot Nodes 975 1021 4.72%
Edges 868 927 6.80%
Connected Components 155 150 -3.23%
Largest Connected Component Size 40 57 42.50%
Analysis Time (s) 115.70 116.77 0.92%
Main Nodes 807 842 4.34%
Edges 975 1035 6.15%
Connected Components 82 81 -1.22%
Largest Connected Component Size 84 109 29.76%
Analysis Time (s) 794.29 794.63 0.04%

5.2 Identifying Risky Flow in Firmware

5.2.1 Threat Model

To prove the value of our tool, we propose the following threat model.

We assume an attacker that has gained access to the controller device and tries to alter
the state of the worker device by sending requests to it through the Modbus communication
protocol. The attacker can send an arbitrary number of messages (function codes) to the
DuT and make it operate in an unintended way. Examples of such attacks have been de-
scribed in [35]. A message sent through the Modbus protocol usually contains the Protocol
Data Unit (PDU) function code, a register address, a value to be written to that address, as
well as the worker’s address and an error check (checksum). All the elements above con-
stitute the Application Data Unit of the Modbus protocol [36]. A successful attack must

meet two conditions to be successful:

1. the Modbus message must write a value to a specific hardware control register of the

firmware.

31

2. this value can change the state of the DuT when written to that register.

Finally, we assume that attackers know the internals of the DuT chipset so that they can

select the hardware control registers they want to target.

5.2.2 Risky Flow

We have already defined information flow as the propagation of information from a source
to a sink. We now define risky flow as an information flow that has an external input
as a source (e.g., data coming from a protocol the DuT uses for its communication) and
reaches a sink that is a hardware control register that can change the state of the DuT in an
unintended way. We used our tool to help us analyze the firmware of an IoT device and
identify a potentially risky flow that could compromise the security of the DuT based on the
threat model mentioned in subsection 5.2.1. For our analysis we used the older firmware
version of the DuT (v2.98).

In function sub_800D5BC (shown in Figure 5.2), we can see an example of how our tool
helps to identify data/signal in control register UARTS_SR (source) that depends on data
coming from the Modbus protocol that impacts the hardware control register USB_EPOR
(sink). Specifically, we see that only if Condition_I in instruction “CBZ R3, loc_800D65A”
is not satisfied, the control flow will pass to Block_I (loc_800D678), which updates the
value of USB_EPOR. We consider this flow risky based on our definition since UART and
USB are two peripherals that should operate independently. Therefore, such a flow could
cause unpredictable behavior and potentially disrupt the USB functionality.

There are more conditions that need to be satisfied so that the control flow will pass to
Block_1, but they are dependent on data coming from other sources (e.g., data in RAM).
Since our analysis is only static, we assume that the rest of the conditions are met and the
described path is feasible. To validate our assumptions, dynamic analysis of the firmware
would be needed.

In general, a risky flow can arise from an explicit information flow. However, with our

32

CMP
ADD. W
()]}

W= %}

LDR.W LDR
UXTH LDRB.W 20000248 ; R1l=[unk_2000
f AMOVS

‘EUF‘ w
STR.W

Figure 5.2: View from IDA Pro for function sub_800D5BC of DuT’s v2.98

33

findings, we show that there can be a risky flow arising from implicit information flow.
Previous works do not identify such risky flows making our research the first to identify
them.

Leveraging the threat model and the risky flow we identified, we propose an attack
scenario that could compromise the DuT’s security. We assume that we have the IoT ther-
mostat, and it is a worker device in an ICS. The controller device can send messages to the
worker through the Modbus protocol. An attacker would first try to gain unauthorized ac-
cess to the controller device. After gaining access and identifying the DuT in the network,
they can attempt to exploit vulnerabilities in its firmware. Based on our findings, this can
be done by sending data to the UART peripheral, to write into the USB_EPOR hardware
control register after propagation, and disrupting the USB functionality. This could have

one of the following outcomes:

1. The disruption causes a buffer overflow or memory leak, an attacker could use this
vulnerability now to execute malicious code on the device or gain unauthorized ac-

cess to sensitive data.

2. The disruption could potentially prevent firmware updates or configuration changes
from being made via USB, or prevent the thermostat from reporting data to a USB-

connected monitoring system.

3. The attacker uses the disruption as a diversionary tactic to distract security personnel

while they attempt to exploit another vulnerability in the system.

Based on our threat model, this could be a successful attack since (1) the Modbus
message could write a value to a specific hardware control register of the firmware, and (2)
this value could change the state of the DuT when written to that register (by disrupting the

USB functionality).

34

5.3 Analysis at Scale Results

In this section, we present the results of analyzing multiple firmware samples in parallel, a
key capability of the Xplicit tool. We were able to successfully analyze 8 firmware samples
concurrently. The details of the graphs produced by Xplicit are summarized in Table 5.3.

Our generalized approach effectively managed a diverse array of firmware samples
from various devices including a Door Lock, a Drone, a Robot, a CNC Router, a PLC, a
Steering Control, and the MC6 thermostat used in the prototype development phase. These
firmware binaries were sourced from a GitHub repository [37] maintained by UCSB Se-
cLab and include many that were originally analyzed in the P2IM study [10]. This selection
demonstrates the robustness of our methods across a range of applications and chipsets, ini-
tially including and building upon our earlier analyses of two thermostat firmware binaries.
All the chipsets were of the 32-bit ARM v7-M architecture and used Cortex-M3 or Cortex-
M4 processors. Most of the chipsets were manufactured by STMicroelectronics, but we
also had a chipset from Microchip Technology Inc. (previously known as Atmel).

The analysis of each firmware sample was conducted using the Control Flow Graph
(CFG), Data Flow Graph (DFG), and Data Flow Graph with Implicit Data Flows (DFG
with Implicit Data Flows) techniques. The results include metrics such as the number of
nodes, edges, and connected components for each type of graph, as well as the analysis
time in seconds. For DFG with Implicit Data Flows, the implicit paths discovered are also
included as a metric. These metrics provide a view of the complexity and scalability of our
analysis approach.

Challenges persisted in achieving complete automation of the Data Flow Analysis.
Specifically, the automation was fully achievable only in scenarios where importing an
SVD file was not necessary. When SVD files were required, the limitations of IDA Pro’s
command-line interface necessitated manual intervention to import these files through the

GUI, which hindered full automation. However, for binaries that did not require SVD files,

35

our Data Flow Analysis was entirely automated.
Overall, the results demonstrate the robustness and efficiency of Xplicit in handling a

variety of firmware samples, showcasing its potential for large-scale firmware analysis.

36

6 1T 90¢ VLT 9T 1T 61 891 6C S 8¥C 061 I AILT HSXENVSLY CIN-XH0D [01U0D) SuLddg
9 0€ Iv€l SL6 S6L Ly LITT 888 LO8 8 9¢¢ 08¢ I MEIL TZ6TPATENLS YIN-XMOD O1d
09 8L 8LST Sg€eT €LT S6 vOPT 80CTI €LI1 €1 1LS 06T 14 66T TZ6TVATENLS YIN-X9MOD 190y DOND
43 9¢ 908 8¢L 8CI 89 oL 199 CLT 1 L6T 681 4 96 8IEOTACEINLS EIN-XH0D 10q0Y
91 9T 29 80§ 41 LT €8S 6LY 8C1 C 6€ [4¥4 [\ Ty FICOTITENLS EIN-X9MOD auoiq
0C (43 S00T 0¢€8 9614 9¢ 56 L6L 0I1¢ € 661 0¢ 14 JIEE HXTSTTCENLS EIN-X9MOD }d07 100
¥4 1€C 2961 €981 188 LET eP81 T8LI €L8 8 €ore 8101 ¥¢ WI'T HZEOTJTENLS EIN-X9MO0D LT €A 9OIN
oy €€ ¥LOCT 9S61 8LL 8¢€C 9961 8L81 69L c1 8¢ 8L6 8% WY1 HZEOTATENLS EIN-XMOD 86'CA 9OIN
sypeq syuduodwo) (s) iy, sjyuduodwo) (s)suny, syuduodwro) (s) duuip,

pidw] — pajoduuo) SIBPY SIPON SISA[eUy Pajoduuo) SIBPA SIPON SIsAf[euy Pajoduuo)) SIBPE SIPON sIsA[euy oz1g
y josdiy) 10sSId01g ina

smolyq eye(yondwy P A 4a Rl Lreurg

SINS9Y 9[edS Ie sisAreuy 1o1dy €°¢ 9[qe],

37

CHAPTER 6
DISCUSSION

In this chapter, we discuss the limitations of our current approach and propose future work
to enhance the capabilities of our firmware analysis tool, Xplicit. Understanding these lim-
itations is crucial for setting realistic expectations and identifying areas for improvement.
Additionally, outlining future work helps in providing a roadmap for subsequent research

and development.

6.1 Limitations

6.1.1 Control Flow Graph Limitations

The production of the CFG using our tool, Xplicit, encounters certain limitations that im-
pact its accuracy and completeness. These limitations are inherent to the process of auto-

mated disassembly and analysis, and include:

1. Code Recognition: Code recognition is a well-known challenge across disassem-
blers, including IDA Pro. This impacts our ability to accurately identify and process

all executable code within the firmware.

2. Function Recognition: If IDA Pro does not recognize certain segments as code
belonging to a function, and these segments are not manually assigned to a function,

then our analysis does not include these segments. This results in potential gaps in

the CFG.

3. Reachability of Functions: There are functions in the firmware that are not reach-
able. Currently, we consider these functions to be interrupt handlers. Another pos-

sibility for not reaching these functions can be attributed to IDA Pro’s automated

38

analysis of the firmware, where some code might not be recognized properly as code.

4. Call Order Accuracy: The call order depicted in the CFG might not always reflect
the actual execution path, especially when branching is conditional. Moreover, func-
tions called multiple times within another function are only recorded at their first

invocation, omitting subsequent calls from the visualization.

5. Points-to-Analysis: Our current methodology does not use points-to-analysis, which
could predict certain jumps or calls by understanding where general-purpose registers

are pointing. This omission can lead to incomplete flow paths in the CFG.

These limitations delineate the scope of our CFG’s reliability and should be considered
when interpreting its output. Enhancements to address these challenges are potential areas

for future work.

6.1.2 Data Flow Graph Limitations

A primary limitation in our DFG analysis arises from the ambiguity in distinguishing be-
tween immediate values and hardware control register addresses when using ‘LDR’ instruc-
tions. This uncertainty can lead to inaccuracies in the DFG, where nodes might incorrectly
represent the loading of control registers or peripheral addresses instead of immediate val-
ues. This could potentially lead to misinterpretations of the data flows within the firmware.

Additionally, there are control registers and peripherals that are not identified through
our analysis, attributed to control registers directly assigned into general-purpose registers
with a ’"MOV” instruction (e.g., MOV.W R7, #0xEO0O0O0E00O0). Our tool is only search-
ing for control registers and peripherals that are initially loaded with "LDR” instructions to

have a more focused analysis.

39

6.1.3 Implicit Data Flow Analysis Limitations

Our prototype creates a path representing an implicit flow by connecting the conditional
instruction to the immediately next instruction where the control flow would branch after
the execution of the comparison check. However, upon review, we noticed instances where
the comparison check was followed by a block of code rather than a single instruction.
In such cases, it would be more reasonable to connect the conditional instruction to each
instruction in the subsequent block to avoid losing information from our data flow analysis.

The problem with introducing too many implicit flows, though, is that it would create
many new paths, most of which add no value to our targeted analysis; hence, the whole

effort for a more targeted analysis would be defied.

6.1.4 Static Information Flow Analysis Limitations

Always when performing static analysis, one has to keep in mind that dynamic analysis is
needed to verify that a potential vulnerability is an actual vulnerability. Static analysis can
identify paths that might lead to vulnerabilities, but to make sure that the path leading to the
vulnerability is feasible, actual execution of the firmware code is needed. This limitation
highlights the necessity of dynamic analysis to confirm the practical relevance and accuracy

of the identified potential vulnerabilities.

6.2 Future Work

6.2.1 Decluttering Data Flow Graphs

We let for future work to declutter the produced DFGs. Currently, manual inspection of
hundreds of nodes is required to identify potential vulnerabilities. To make our system even
more scalable, we need to analyze more firmware samples, to manually identify the paths
of potential vulnerabilities, and then determine the access patterns of the hardware control

registers that indicate potential vulnerabilities. A good starting point to scale the analysis

40

is the [37], containing more than 800 firmware binaries. Subsequently, there should be
removal of the remaining paths that do not follow these identified access patterns from our

DFGs.

6.2.2 Enhanced Implicit Data Flow Analysis

To address the implicit data flow limitation, an enhanced implicit flow analysis could be
implemented using heuristics to select and fetch instructions that add potentially risky”
paths to the analysis, indicating possible risks in the firmware. Currently, our prototype
connects the conditional instruction to the immediately next instruction, which may result
in the loss of valuable information when the comparison check is followed by a block of
code rather than a single instruction. Analyzing more firmware samples could help in deter-
mining appropriate heuristics, refining the approach, and ensuring a more comprehensive

understanding of implicit data flows.

6.2.3 Usability Testing and User Study

We believe our tool is more usable than existing tools and enables even less technical indi-
viduals to perform firmware analysis. However, a user study is needed to test the usability
of our tool and validate this claim. Conducting such a study will provide valuable insights
into how users interact with Xplicit and identify areas where the user experience can be

improved.

41

CHAPTER 7
CONCLUSION

In this thesis, we focus on firmware analysis aimed at detecting potential vulnerabilities
in ARM32 firmware. To address current methodological gaps, we introduce Xplicit, a
tool designed to enhance the effectiveness of firmware analysis by integrating both explicit
and implicit data flow analysis. Xplicit is built on top of IDA Pro and IDAPython for
disassembly and scripting, NetworkX for control and data flow visualization, and GNU
Parallel for scalability. Through the novel development of a static information flow analysis
method that identifies implicit data flows within ARM32 firmware, Xplicit offers a robust
and scalable approach. Last but not least, Xplicit reduces its reliance on IDA Pro after the
initial disassembly, making control and data flow analysis more accessible to users with

varying technical backgrounds.

42

Appendices

CONTROL REGISTERS & PERIPHERALS IDENTIFICATION

APPENDIX A

In Table A.1, we observe the address of the peripherals, their type (based on the Cortex-M3

system address map), the name based on the SVD file, and then the binary values boot and

steady, which represent the state of the firmware. If the value is 1, that means that we have

detected this control register or peripheral in the corresponding state, otherwise, the value

is 0. If the name is “NOT IN SVD” that means that this control register or peripheral was

only detected by our analysis without the SVD.

Table A.1: Control Registers & Peripherals Identified

Address Type Name Boot Steady
0x40003000 Peripheral IWDG_KR 1 1
0x40004800 Peripheral NOT IN SVD 0 1
0x40004804 Peripheral NOT IN SVD 0 1
0x40005c00 Peripheral USB_EPOR 0 1
0x40005c40 Peripheral USB_CNTR 0 1
0x40005c44 Peripheral USB_ISTR 0 1
0x40005¢50 Peripheral USB_BTABLE 0 1
0x40007400 Peripheral DAC_CR 1 1
0x40007404 Peripheral DAC_SWTRIGR 1 1
0x40010000 Peripheral AFIO_EVCR 1 0
0x40010004 Peripheral AFIO_MAPR 1 0
0x40010400 Peripheral EXTILIMR 1 1
0x40010414 Peripheral EXTI_PR 0 1
0x40013400 Peripheral NOT IN SVD 1 1
0x40013800 Peripheral USART1_SR 0 1

44

Address Type Name Boot Steady
0x40013804 Peripheral USART1_DR 0 1
0x40020000 Peripheral DMA1_ISR 0 1
0x40020004 Peripheral DMAI1_IFCR 1 1
0x40020030 Peripheral DMA1_CCR3 0 1
0x40020058 Peripheral DMA1_CCR5 0 1
0x40020400 Peripheral NOT IN SVD 0 1
0x40020404 Peripheral NOT IN SVD 0 1
0x40021000 Peripheral RCC_CR 1 1
0x40021004 Peripheral RCC_CFGR 1 1
0x40021008 Peripheral RCC_CIR 1 0
0x4002100c Peripheral RCC_APB2RSTR 1 1
0x40021010 Peripheral RCC_APBIRSTR 1 1
0x40021014 Peripheral RCC_AHBENR 1 1
0x40021018 Peripheral RCC_APB2ENR 1 1
0x4002101c Peripheral RCC_APBIENR 1 1
0x40021020 Peripheral RCC_BDCR 1 1
0x40021024 Peripheral RCC_CSR 1 1
0x40022000 Peripheral FLASH_ACR 1 1
0x4002200c Peripheral FLASH_SR 1 1
0x40022010 Peripheral FLASH_CR 1 1
0x4002201c Peripheral FLASH_OBR 1 0
0x40022020 Peripheral FLASH_WRPR 1 0
0x42200000 Peripheral NOT IN SVD 1 0
0x42420000 Peripheral NOT IN SVD 1 1
0x424200d8 Peripheral NOT IN SVD 1 1
0x42420480 Peripheral NOT IN SVD 1 0
0xa0000060 External_device FSMC_PCR2 1 0

45

Address

Type

Name

Boot

Steady

0xa0000064
0xa0000074
0xa0000080
0xa0000084
0xa0000088
0xa000008c
0xa0000094
0xa00000a0
0xa00000a4
0xa00000a8
0xa00000ac
0xe000e010
0xe000e100
0xe000e180
0xe000e284
0xe000e400
0xe000ed00
0xe000ed04
0xe000ed08
0xe000edOc
0xe000ed10
0xe000ed24
0xe000ed28
0xe000ed2c
0xe000ed30
0xe000ed34

0xe000ed38

External_device
External_device
External_device
External device
External_device
External device
External_device
External_device
External_device
External _device
External device
Private_peripheral _bus_Internal
Private_peripheral _bus_Internal
Private_peripheral_bus_Internal
Private_peripheral _bus_Internal
Private_peripheral_bus_Internal
Private_peripheral _bus_Internal
Private_peripheral _bus_Internal
Private_peripheral _bus_Internal
Private_peripheral _bus_Internal
Private_peripheral_bus_Internal
Private_peripheral _bus_Internal
Private_peripheral_bus_Internal
Private_peripheral _bus_Internal
Private_peripheral_bus_Internal
Private_peripheral _bus_Internal

Private_peripheral _bus_Internal

FSMC_SR2
FSMC_ECCR2
FSMC_PCR3
FSMC_SR3
FSMC_PMEM3
FSMC_PATT3
FSMC_ECCR3
FSMC_PCR4
FSMC_SR4
FSMC_PMEM4
FSMC_PATT4
STK_CTRL
NVIC_ISERO
NVIC_ICERO
NVIC_ICPR1
NVIC_IPRO
SCB_CPUID
SCB_ICSR
SCB_VTOR
SCB_AIRCR
SCB_SCR

SCB_SHCRS

SCB_CFSR_UFSR_BFSR_MMFSR

SCB_HFSR
NOT IN SVD
SCB_MMFAR

SCB_BFAR

o o o o o o =, o o o o o o o o o o o

—_—

[

o o o o o o o

46

Address Type Name Boot Steady
0xe000edfc Private_peripheral_bus_Internal NOT IN SVD 0 1
0xe000ef00 Private_peripheral _bus_Internal NVIC_STIR_STIR 1 0

47

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

B. Zhao et al., “A large-scale empirical study on the vulnerability of deployed iot
devices,” IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 3,
pp. 1826-1840, 2020.

Ripple 20 - JSOF, https://www.jsof - tech.com/disclosures/ripple20/, Accessed:
2024-07-07.

Zscaler ThreatLabz Finds 400% Increase in IoT and OT Malware Attacks Year-over-
Year, https://www.zscaler.com/press/zscaler-threatlabz- finds-400-increase-iot-and-
ot - malware - attacks - year - over - year - underscoring, Accessed: 2024-07-07, Oct.
2023.

N. Redini et al., “BootStomp: On the security of bootloaders in mobile devices,” in
26th USENIX Security Symposium (USENIX Security 17), 2017, pp. 781-798.

H. Wen, Z. Lin, and Y. Zhang, “FirmXRay: Detecting Bluetooth Link Layer Vul-
nerabilities From Bare-Metal Firmware,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp. 167-180.

A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A Large-Scale Analysis
of the Security of Embedded Firmwares,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 95-110.

A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware analysis at
scale: a case study on embedded web interfaces,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, 2016, pp. 437-448.

Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable graph-based bug
search for firmware images,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 480—491.

Y. David, N. Partush, and E. Yahav, “Firmup: Precise static detection of common
vulnerabilities in firmware,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 392-404,
2018.

B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and Hardware-independent Firmware
Testing via Automatic Peripheral Interface Modeling,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1237-1254.

D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated dynamic
analysis for linux-based embedded firmware.,” in NDSS, vol. 1, 2016, pp. 1-1.

48

https://www.jsof-tech.com/disclosures/ripple20/
https://www.zscaler.com/press/zscaler-threatlabz-finds-400-increase-iot-and-ot-malware-attacks-year-over-year-underscoring
https://www.zscaler.com/press/zscaler-threatlabz-finds-400-increase-iot-and-ot-malware-attacks-year-over-year-underscoring

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Cheng et al., “DTaint: detecting the taint-style vulnerability in embedded device
firmware,” in 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), IEEE, 2018, pp. 430-441.

Q. Li, X. Feng, R. Wang, Z. Li, and L. Sun, “Towards fine-grained fingerprinting of
firmware in online embedded devices,” in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, IEEE, 2018, pp. 2537-2545.

L. Zhu, X. Fu, Y. Yao, Y. Zhang, and H. Wang, “FIoT: detecting the memory corrup-
tion in lightweight IoT device firmware,” in 2019 18th IEEE International Confer-
ence On Trust, Security And Privacy In Computing And Communications/13th IEEE
International Conference On Big Data Science And Engineering (TrustCom/Big-
DataSE), IEEE, 2019, pp. 248-255.

W. Zhou et al., “Phantom Device Attack: Uncovering the Security Implications of
the Interactions among Devices, [oT Cloud, and Mobile Apps,” arXiv. org, 2019.

N. Redini et al., “Karonte: Detecting insecure multi-binary interactions in embedded
firmware,” in 2020 IEEE Symposium on Security and Privacy (SP), IEEE, 2020,
pp. 1544-1561.

K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling Near-Real-Time
Dynamic Analyses of Embedded Systems,” in 9th USENIX Workshop on Olffensive
Technologies (WOOT 15), 2015.

E. Gustafson et al., “Toward the analysis of embedded firmware through automated

re-hosting,” in 22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2019), 2019, pp. 135-150.

M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae: Towards large-
scale emulation of iot firmware for dynamic analysis,” in Annual Computer Security
Applications Conference, 2020, pp. 733-745.

C. Spensky et al., “Conware: Automated modeling of hardware peripherals,” in Pro-
ceedings of the 2021 ACM Asia Conference on Computer and Communications Se-
curity, 2021, pp. 95-109.

J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti, et al., “AVATAR: A Framework to
Support Dynamic Security Analysis of Embedded Systems’ Firmwares.,” in NDSS,
vol. 14, 2014, pp. 1-16.

A. Fasano et al., “SoK: Enabling security analyses of embedded systems via rehost-
ing,” in Proceedings of the 2021 ACM Asia Conference on Computer and Commu-
nications Security, 2021, pp. 687-701.

49

[23] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying information
flow properties of firmware using symbolic execution,” in 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE), IEEE, 2016, pp. 337-342.

[24] E. Johnson et al., “Jetset: Targeted firmware rehosting for embedded systems,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp. 321-338.

[25] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware: Finding vul-
nerabilities in embedded systems using symbolic execution,” in 22nd USENIX Secu-
rity Symposium (USENIX Security 13), 2013, pp. 463-478.

[26] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice-automatic
detection of authentication bypass vulnerabilities in binary firmware.,” in NDSS,
vol. 1, 2015, pp. 1-1.

[27] A powerful disassembler and a versatile debugger, https://hex-rays.com/ida- pro,
Accessed: 2024-07-07.

[28] M. Jiang, Y. Zhou, X. Luo, R. Wang, Y. Liu, and K. Ren, “An empirical study on
arm disassembly tools,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 401-414.

[29] Hopper Disassembler, the reverse engineering tool that lets you disassemble, decom-
pile and debug your applications. https://www.hopperapp.com, Accessed: 2024-07-
07.

[30] V. Salis, T. Sotiropoulos, P. Louridas, D. Spinellis, and D. Mitropoulos, “Pycg: Prac-
tical call graph generation in python,” in 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), IEEE, 2021, pp. 1646-1657.

[31] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert,
“Nautilus: Fishing for deep bugs with grammars.,” in NDSS, 2019.

[32] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Structure, Dy-
namics, and Function using NetworkX,” in Proceedings of the 7th Python in Science
Conference, G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA,
2008, pp. 11-15.

[33] O. Tange, “Gnu parallel - the command-line power tool,” ;login: The USENIX Mag-
azine, vol. 36, no. 1, pp. 42—47, Feb. 2011, Accessed: 2024-07-07.

[34] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable code revis-
ited,” in Ninth Working Conference on Reverse Engineering, 2002. Proceedings.,
IEEE, 2002, pp. 45-54.

50

https://hex-rays.com/ida-pro
https://www.hopperapp.com

[35] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for the mod-

bus protocols,” International Journal of Critical Infrastructure Protection, vol. 1,
pp. 3744, 2008.

[36] Modbus Application Protocol Specification, https://modbus . org/docs/Modbus_
Application_Protocol_V1_1b3.pdf, Accessed: 2024-07-07, Apr. 2012.

[37]1 Monolithic firmware collection, https://github.com/ucsb-seclab/monolithic-firmware-
collection, Accessed: 2024-07-07, 2022.

51

https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/ucsb-seclab/monolithic-firmware-collection

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction
	Thesis Proposition
	Contributions
	Thesis Overview

	2 | Background
	Types of Firmware for IoT Devices
	Static Analysis of Firmware
	Implicit Data Flows
	Hardware Control Registers
	Vulnerabilities of Interest

	3 | Related Work
	Firmware Collection
	Firmware Analysis
	Evaluation & Comparison of Existing Tools

	4 | Methodology
	Overview
	Infrastructure
	Prototype Development
	Analysis at Scale
	Control Flow Analysis
	Data Flow Analysis
	Enhanced Data Flow Analysis
	Implicit Data Flow Analysis

	5 | Results
	Prototype Development Results
	Identifying Risky Flow in Firmware
	Analysis at Scale Results

	6 | Discussion
	Limitations
	Future Work

	7 | Conclusion
	Appendices
	A | Control Registers & Peripherals Identification

	References

